A Testbench with Increased Accuracy for the Calibration of Inertial Navigation Systems and Inertial Sensors

Author(s):  
Bernard Vau ◽  
Mehdi Bussutil ◽  
Joachin Honthaas ◽  
Colin Stevens
2013 ◽  
Vol 66 (5) ◽  
pp. 751-772 ◽  
Author(s):  
Xueyun Wang ◽  
Jie Wu ◽  
Tao Xu ◽  
Wei Wang

Inertial Navigation Systems (INS) were large, heavy and expensive until the development of cost-effective inertial sensors constructed with Micro-electro-mechanical systems (MEMS). However, the large errors and poor error repeatability of MEMS sensors make them inadequate for application in many situations even with frequent calibration. To solve this problem, a systematic error auto-compensation method, Rotation Modulation (RM) is introduced and detailed. RM does no damage to autonomy, which is one of the most important characteristics of an INS. In this paper, the RM effects on navigation performance are analysed and different forms of rotation schemes are discussed. A MEMS-based INS with the RM technique applied is developed and specific calibrations related to rotation are investigated. Experiments on the developed system are conducted and results verify that RM can significantly improve navigation performance of MEMS-based INS. The attitude accuracy is improved by a factor of 5, and velocity/position accuracy by a factor of 10.


2020 ◽  
Vol 1 (46) ◽  
pp. 353-364
Author(s):  
Topolskov E ◽  
◽  
Beljaevskiy L L ◽  
Serdjuke A ◽  
◽  
...  

Providing high accuracy of the coordinates and trajectories of objects by measurements conducted in navigation systems and complexes is an urgent task, which improves safety and efficiency of different modes of transport. However difficult environmental conditions, where vehicles are commonly used, stipulate influence of different factors on performance of onboard satellite navigation receivers, which are used as basic navigation devices for ground vehicle nowadays. Setting on cars used for common purposes additional navigation devices, which provide better performance, in most cases is economically unreasonable. Economically reasonable ways to improve onboard navigation complexes of vehicles, which are used for common purposes, are examined in this article. Functional diagram and principles of work of navigational complex, which uses the satellite navigation receiver and simplified variant of inertial navigation system is pointed as well. Also, the justification of methods for minimizing the error formats of coordinates and trajectories of moving objects based on information processing in multipositional, in particular satellite-inertial navigation systems and complexes, is presented. The obtained research results give an opportunity to develop an algorithm for coordinate refinement, which can be implemented in the improved on-board navigational complex of vehicle. KEY WORDS: NAVIGATION SYSTEMS AND COMPLEXES, INERTIAL SENSORS, NAVIGATION DEFINITIONS, ACCURACY AND RELIABILITY OF COORDINATES AND TRAJECTORIES OF MOVING OBJECTS, ELLIPS OF ERRORS, PROBABILISTIC-GEOMETRIC METHODS.


Author(s):  
Wei Shi ◽  
Yang Wang ◽  
Yuanxin Wu

The foot-mounted inertial navigation system is an important application of pedestrian navigation as it in principle does not rely any external assistance. A real-time range decomposition constraint method is proposed in this paper to combine the information of dual foot-mounted inertial navigation systems. It is well known that low-cost inertial sensors with ZUPT (zero-velocity update) and range decomposition constraint perform better than in either single way. This paper recommends that the distance of separation between the position estimates of feet-mounted inertial navigation systems be restricted in the ellipsoidal constraint which relates to the maximum step and leg height. The performance of the proposed method is studied utilizing experimental data. The results indicate that the method can effectively correct the dual navigation systems’ position over the existing spherical constraint.


2013 ◽  
Vol 33 (1) ◽  
pp. 173-186
Author(s):  
Andrzej Szelmanowski

Abstract The paper is intended to discuss errors in measurements of angular velocity and linear acceleration by means of electronic inertial sensors incorporated into the Attitude and Heading Reference Systems (AHRS) as well as Inertial Navigation Systems (INS). The mathematical equations are found out to establish how these errors affect deviations of flight parameters (such as linear speed and coordinates of the aircraft position indicated by navigation systems) that are calculated from the measurements and imaged e.g. in helmetmounted cueing systems. Some issues related to diagnostics of inertial navigation systems are addressed as well, both the most recent ones (e.g. the TOTEM-3000 central station with laser sensors installed on-board of the W-3PL GŁUSZEC helicopter) integrated via digital data buses MIL-1553B or ARINC-429 as well as more outdated solutions, such as IKW-1 and IKW-8 system used for Su-22 aircrafts. The methods of examination of the data processing paths for signals received from inertial sensors are presented with guidelines for development of the computer system for assessment of technical condition exhibited by systems of inertial navigation with prolonged technical resource.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2947
Author(s):  
Ming Hua ◽  
Kui Li ◽  
Yanhong Lv ◽  
Qi Wu

Generally, in order to ensure the reliability of Navigation system, vehicles are usually equipped with two or more sets of inertial navigation systems (INSs). Fusion of navigation measurement information from different sets of INSs can improve the accuracy of autonomous navigation effectively. However, due to the existence of misalignment angles, the coordinate axes of different systems are usually not in coincidence with each other absolutely, which would lead to serious problems when integrating the attitudes information. Therefore, it is necessary to precisely calibrate and compensate the misalignment angles between different systems. In this paper, a dynamic calibration method of misalignment angles between two systems was proposed. This method uses the speed and attitude information of two sets of INSs during the movement of the vehicle as measurements to dynamically calibrate the misalignment angles of two systems without additional information sources or other external measuring equipment, such as turntable. A mathematical model of misalignment angles between two INSs was established. The simulation experiment and the INSs vehicle experiments were conducted to verify the effectiveness of the method. The results show that the calibration accuracy of misalignment angles between the two sets of systems can reach to 1″ while using the proposed method.


2012 ◽  
Vol 433-440 ◽  
pp. 2802-2807
Author(s):  
Ying Hong Han ◽  
Wan Chun Chen

For inertial navigation systems (INS) on moving base, transfer alignment is widely applied to initialize it. Three velocity plus attitude matching methods are compared. And Kalman filter is employed to evaluate the misalignment angle. Simulations under the same conditions show which scheme has excellent performance in precision and rapidness of estimations.


Sign in / Sign up

Export Citation Format

Share Document