Highly Automated Vehicle Absolute Positioning Using LiDAR Unique Signatures

2021 ◽  
Author(s):  
Hadi Wassaf ◽  
Katie Bernazzani ◽  
Pratik Gandhi ◽  
Jason Lu ◽  
Karen Van Dyke ◽  
...  
2008 ◽  
Vol 30 (2) ◽  
pp. 161-169
Author(s):  
Lê Huy Mình ◽  
Phạm Xuân Thành ◽  
Nguyễn Chiến Thắng ◽  
Trần Thị Lan ◽  
R. Fleury ◽  
...  

Estimatlon of the relatlon between the total tropospheric water vapour and the precision of the absolute positioning by GPS in Vietnam


Author(s):  
Varun Kumar ◽  
Lakshya Gaur ◽  
Arvind Rehalia

In this paper the authors have explained the development of robotic vehicle prepared by them, which operates autonomously and is not controlled by the users, except for selection of modes. The different modes of the automated vehicle are line following, object following and object avoidance with alternate trajectory determination. The complete robotic assembly is mounted on a chassis comprising of Arduino Uno, Servo motors, HC-SRO4 (Ultrasonic sensor), DC motors (Geared), L293D Motor Driver, IR proximity sensors, Voltage Regulator along with castor wheel and two normal wheels.


2020 ◽  
Vol 53 (2) ◽  
pp. 8118-8123
Author(s):  
Teawon Han ◽  
Subramanya Nageshrao ◽  
Dimitar P. Filev ◽  
Ümit Özgüner

Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Johannes Ossig ◽  
Stephanie Cramer ◽  
Klaus Bengler

In the human-centered research on automated driving, it is common practice to describe the vehicle behavior by means of terms and definitions related to non-automated driving. However, some of these definitions are not suitable for this purpose. This paper presents an ontology for automated vehicle behavior which takes into account a large number of existing definitions and previous studies. This ontology is characterized by an applicability for various levels of automated driving and a clear conceptual distinction between characteristics of vehicle occupants, the automation system, and the conventional characteristics of a vehicle. In this context, the terms ‘driveability’, ‘driving behavior’, ‘driving experience’, and especially ‘driving style’, which are commonly associated with non-automated driving, play an important role. In order to clarify the relationships between these terms, the ontology is integrated into a driver-vehicle system. Finally, the ontology developed here is used to derive recommendations for the future design of automated driving styles and in general for further human-centered research on automated driving.


Author(s):  
Mohammad Rabeul Hasan ◽  
Hasan al Banna ◽  
Md Rayhan ◽  
Shafayat Hossain ◽  
Md. Iquebal Hossain Patwary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document