Autonomous and Decentralized Orbit Determination and Clock Offset Estimation of Lunar Navigation Satellites Using GPS Signals and Inter-Satellite Ranging

2021 ◽  
Author(s):  
Keidai Iiyama ◽  
Yosuke Kawabata ◽  
Ryu Funase
2013 ◽  
Vol 67 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Cao Fen ◽  
Yang XuHai ◽  
Su MuDan ◽  
Li ZhiGang ◽  
Feng ChuGang ◽  
...  

In order to more restrict the transverse orbit error, a new method named “differenced ranges between slave stations by transfer”, similar to Very Long Baseline Interferometry (VLBI) observation, has been developed in the Chinese Area Positioning System (CAPS). This method has the number of baselines added, the baseline length increased and the data volume enlarged. In this article, the principle of “differenced ranges between slave stations by transfer” has been described in detail, with the clock offset between slave stations and system error which affects the precision of the differenced ranges observation being discussed. Using this method, the differenced observation of the SINOSAT-1 satellite with C-band between slave stations from 6 to 13 June 2005 was conducted. Then a comparison was made between the accuracy of orbit determination and orbit prediction. A conclusion can be drawn that the combination of pseudo-range receiving the own-station-disseminated signal and the differenced range observation between slave-slave stations has a higher orbit determination and prediction accuracy than using only the former.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Xu Yang ◽  
Qianxin Wang ◽  
Shuqiang Xue

Geographical distribution of global navigation satellite system (GNSS) ground monitoring stations affects the accuracy of satellite orbit, earth rotation parameters (ERP), and real-time satellite clock offset determination. The geometric dilution of precision (GDOP) is an important metric used to measure the uniformity of the stations distribution. However, it is difficult to find the optimal configuration with the lowest GDOP when taking the 71% ocean limitation into account, because the ground stations are hardly uniformly distributed on the whole of the Earth surface. The station distribution geometry needs to be optimized and besides the stability and observational quality of the stations should also be taken into account. Based on these considerations, a method of configuring global station tracking networks based on grid control probabilities is proposed to generate optimal configurations that approximately have the minimum GDOP. A random optimization algorithm method is proposed to perform the station selection. It is shown that an optimal subset of the total stations can be obtained in limited iterations by assigning selecting probabilities for the global stations and performing a Monte Carlo sampling. By applying the proposed algorithm for observation data of 201 International GNSS Service (IGS) stations for 3 consecutive days, an experiment of ultra-rapid orbit determination and real-time clock offset estimation is conducted. The distribution effects of stations on the products accuracy are analyzed. It shows that (1) the accuracies of GNSS ultra-rapid observed and predicted orbits and real-time clock offset achieved using the proposed algorithm are higher than those achieved with the traditional method having the drawbacks of lacking evaluation indicators and being time-consuming, corresponding to the improvements 17.15%, 19.30%, and 31.55%, respectively. Only using 30 stations selected by the proposed method, the accuracies achieved reach 2.01 cm (RMS), 4.93 cm (RMS), and 0.20 ns (STD), respectively. Using 60 stations, the accuracies are 1.47 cm, 3.50 cm, and 0.17 ns, respectively. (2) With the increasing number of stations, the accuracies of the Global Positioning System (GPS) orbit and clock offset improve continuously, but more than 60 stations, the improvement on the orbit determination becomes more gradual, while for more than 30 stations, there is no appreciable increase in the accuracy of the real-time clock offset.


Author(s):  
Yongchang Chen ◽  
Chuanzhen Sheng ◽  
Qingwu Yi ◽  
Ran Li ◽  
Guangqing Ma ◽  
...  

Abstract Satellite orbit information is crucial for ensuring that global navigation satellite systems (GNSSs) provide appropriate positioning, navigation and timing services. Typically, users can obtain access to orbit information of a specific accuracy level from navigation messages or precise ephemeris products. Without this information, a system will not be able to provide normal service. In response to this problem, initial orbit information of a certain level of precision must be obtained to support subsequent applications, such as broadcasting or precise ephemeris calculations, thereby ensuring the successful subsequent operation of the navigation system. One of two ways to calculate the initial orbit of a GNSS satellite is to utilize ground tracking stations to observe satellite vector information in the geocentric inertial system; the second way is to utilize GNSS range observations and known orbit information from other satellites. For the second approach, some researchers use the Bancroft algorithm combined with receiver clock offset to determine the initial orbit of GNSS satellites. Because this method requires an additional known receiver clock offset, we study the dependence of the Bancroft algorithm on clock offset in GNSS orbit determination. By assessing the impact of errors of different magnitude on the accuracy of the orbit results, we obtain experimental conclusions. After comprehensively analyzing various errors, we determine the accuracy level that the Bancroft algorithm can achieve for orbit determination without considering receiver clock correction. Dual-frequency and single-frequency pseudorange data from IGS stations are used in orbit determination experiments. When a small receiver clock offset is considered and no correction is made, the deviations in the calculated satellite positions in three dimensions are approximately 979.3 and 1118.1 meters (dual and single frequency); with a satellite clock offset, these values are approximately 928.8 and 1062.7 meters (dual and single frequency).


2019 ◽  
Vol 94 ◽  
pp. 03008 ◽  
Author(s):  
Gimin Kim ◽  
Hyungjik Oh ◽  
Chandeok Park ◽  
Seungmo Seo

This study proposes real-time orbit/clock determination of Korean Navigation Satellite System (KNSS), which employs the kinematic precise point positioning (PPP) solutions of multiple Global Navigation Satellite System (multi-GNSS) to compensate for receiver clock offset. Global visibility of KNSS satellites in terms of geometric coverage is first analyzed for the purpose of selecting optimal locations of KNSS monitoring stations among International GNSS Service (IGS) and Multi-GNSS Experiment (MGEX) network. While the receiver clock offset is obtained from multi-GNSS PPP clock solutions of real observation data, KNSS measurements are simulated from the dynamically propagated KNSS reference orbit and the receiver clock offset. The offset and drift of satellite clock are also generated based on two-state clock model considering atomic clock noise. Real-time orbit determination results are compared with an artificially generated true or bit, wihch show 0.4m and 0.5m of 3-dimensional root-mean-square (RMS) position errors for geostationary (GEO) and ellitically-inclined-geosynchronous-orbit (EIGSO) satellites, respectively. The overall results show that the real-time precise orbit determination of KNSS should be achievable in meter level by installing KNSS-compatible multi-GNSS receivers on the IGS and/or MGEX network. The overall process can be also used to verify integrity of KNSS monitoring stations.


2012 ◽  
Vol 65 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Cheng Xuan ◽  
Li ZhiGang ◽  
Yang XuHai ◽  
Wu WenJun ◽  
Lei Hui ◽  
...  

The Chinese Area Positioning System (CAPS) is a regional satellite navigation system; its space segment consists of some Geostationary Earth Orbit (GEO) satellites and 2∼3 Inclined Geo-Synchronous Orbit (IGSO) satellites. Only a few satellites are needed to provide good area coverage and hence it is an ideal space segment for a regional navigation system. A time transfer mode is used to transmit navigation signals, so no high-precision atomic clocks are required onboard the satellites; all of the transferred navigation signals are generated by the same atomic clock at the master control station on the ground. By using virtual clock technology, the time of emission of signals from the ground control station is transformed to the time of transfer of signals at the phase centre of the satellite antenna; thus the impact of ephemeris errors of satellite on positioning accuracy is greatly decreased, enabling the CAPS to have the capability of wide area augmentation. A novel technology of orbit determination, called Paired Observation Combination for Both Stations (POCBS), proposed by the National Time Service Centre, is used in CAPS. The generation and measurement of ranging signals for the orbit survey are carried out in the ground station and the instrument errors are corrected in real-time. The determination of the clock offset is completely independent of the determination of satellite orbit, so the error of the clock offset has no impact on orbit determination. Therefore, a very high precision of satellite orbits, better than 4·2 cm (1 drms) can be obtained by the stations under regional distribution.


Sign in / Sign up

Export Citation Format

Share Document