Chinese Area Positioning System With Wide Area Augmentation

2012 ◽  
Vol 65 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Cheng Xuan ◽  
Li ZhiGang ◽  
Yang XuHai ◽  
Wu WenJun ◽  
Lei Hui ◽  
...  

The Chinese Area Positioning System (CAPS) is a regional satellite navigation system; its space segment consists of some Geostationary Earth Orbit (GEO) satellites and 2∼3 Inclined Geo-Synchronous Orbit (IGSO) satellites. Only a few satellites are needed to provide good area coverage and hence it is an ideal space segment for a regional navigation system. A time transfer mode is used to transmit navigation signals, so no high-precision atomic clocks are required onboard the satellites; all of the transferred navigation signals are generated by the same atomic clock at the master control station on the ground. By using virtual clock technology, the time of emission of signals from the ground control station is transformed to the time of transfer of signals at the phase centre of the satellite antenna; thus the impact of ephemeris errors of satellite on positioning accuracy is greatly decreased, enabling the CAPS to have the capability of wide area augmentation. A novel technology of orbit determination, called Paired Observation Combination for Both Stations (POCBS), proposed by the National Time Service Centre, is used in CAPS. The generation and measurement of ranging signals for the orbit survey are carried out in the ground station and the instrument errors are corrected in real-time. The determination of the clock offset is completely independent of the determination of satellite orbit, so the error of the clock offset has no impact on orbit determination. Therefore, a very high precision of satellite orbits, better than 4·2 cm (1 drms) can be obtained by the stations under regional distribution.

2013 ◽  
Vol 67 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Cao Fen ◽  
Yang XuHai ◽  
Su MuDan ◽  
Li ZhiGang ◽  
Feng ChuGang ◽  
...  

In order to more restrict the transverse orbit error, a new method named “differenced ranges between slave stations by transfer”, similar to Very Long Baseline Interferometry (VLBI) observation, has been developed in the Chinese Area Positioning System (CAPS). This method has the number of baselines added, the baseline length increased and the data volume enlarged. In this article, the principle of “differenced ranges between slave stations by transfer” has been described in detail, with the clock offset between slave stations and system error which affects the precision of the differenced ranges observation being discussed. Using this method, the differenced observation of the SINOSAT-1 satellite with C-band between slave stations from 6 to 13 June 2005 was conducted. Then a comparison was made between the accuracy of orbit determination and orbit prediction. A conclusion can be drawn that the combination of pseudo-range receiving the own-station-disseminated signal and the differenced range observation between slave-slave stations has a higher orbit determination and prediction accuracy than using only the former.


2006 ◽  
Vol 9 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Zhao Qile ◽  
Liu Jingnan ◽  
Ge Maorong

2016 ◽  
Vol 69 (6) ◽  
pp. 1234-1246
Author(s):  
Cao Fen ◽  
Yang Xuhai ◽  
Li Zhigang ◽  
Chen Liang ◽  
Feng Chugang

In C-Band transfer measuring systems, the Precise Orbit Determination (POD) precision of Geostationary Earth Orbit (GEO) satellites is limited by signal biases such as the station delay biases, transponder delay biases, the ionospheric delay model bias, etc. In order to improve the POD precision, the signal biases of the Chinese Area Positioning System (CAPS) are calibrated using Satellite Laser Ranging (SLR) and C-Band Transfer Ranging (CBTR) observations. Since the Changchun SLR site and C-Band station are close to each other, the signal biases of the Changchun C-Band station are calibrated using the co-location comparison method. Then the signal biases of the other two CAPS C-Band stations, located in Linton and Kashi, are calibrated using the combined POD method, with the signal biases of the Changchun C-Band station being fixed. After the signal biases are calibrated, the RMS of the line-of-sight residuals of the Changchun SLR observations decrease by 0·4 m, with the percentage improvement being 75·19%.


2002 ◽  
Vol 39 (5) ◽  
pp. 796-801 ◽  
Author(s):  
Jae-Cheol Yoon ◽  
Kyoung-Min Roh ◽  
Eun-Seo Park ◽  
Bo-Yeon Moon ◽  
Kyu-Hong Choi ◽  
...  

2003 ◽  
Vol 31 (8) ◽  
pp. 1953-1958 ◽  
Author(s):  
R. Zandbergen ◽  
M. Otten ◽  
P.L. Righetti ◽  
D. Kuijper ◽  
J.M. Dow

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuechen Wang ◽  
Jun Shen

Abstract The wide area precise positioning system (WAPPS) is a high-precision positioning system based on a global navigation satellite system. Using a GEO satellite or a communication network, it provides users, in its service area, with real-time satellite orbit, clock, and other corrections. Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning. With the demands for applications of both high-precision and safety of life in real time, WAPPS is facing urgent needs to improve its service integrity. This study presents a real-time integrity monitoring approach for WAPPS. Using dual-frequency ionosphere-free corrections of GPS and BDS, along with monitor station data, related error models are established and the integrity monitoring is achieved, based on the analysis of satellite corrected residuals. In addition, satellite faults are simulated for performance verification. The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.


Author(s):  
Vitalii Savchenko ◽  
Volodymyr Tolubko ◽  
Liubov Berkman ◽  
Anatolii Syrotenko ◽  
Pavlo Shchypanskyi ◽  
...  

The article explores the problem of alternative navigation support for high-precision weapons that use guidance based on signals from global navigation systems. It proposes the use of an autonomous navigation system replacing satellite navigation in the case where major Global Positioning System-like systems are unavailable. It suggests the idea and the model of a moving navigation field that can move along the weapon trajectory. The model of accuracy for the pseudolite navigation system uses the least squares method as its basis. The study looks into the accuracy parameters of the moving navigation field. The results of the study show the advantages of a moving field when compared with a stationary navigation field in case of autonomous use. This research also shows the possibility of using an autonomous system for Special Forces, search and rescue operations, and robotic and unmanned aerial, ground, and sea-based vehicles.


Sign in / Sign up

Export Citation Format

Share Document