scholarly journals Review on Application of Gold Nanoparticles and Paper-based Microfluidic Analytical Device in Detection of Human Chorionic Gonadotropin

Author(s):  
Muhammad Anas Yuzairi Mohd Yusri ◽  
Mohd Hafiz Abu Hassan ◽  
Syaza Azhari

Human chorionic gonadotropin (HCG) has been amongst of essential part of medical diagnostics in gynaecology and oncology since its discovery. Application of gold nanoparticles in detecting HCG is due to gold nanoparticles possess extraordinary optical and physical properties, making them invaluable in various prominent aspects, including its synthesis, stabilization, and functionalization as a sensor. In addition, microfluidic analytical device, a platform for point-of-care testing and numerous applications in various field, can be applied for detection of HCG using diverse types of detection methods. From the literatures, combination of gold nanoparticles and microfluidic analytical device can be assembled to obtain a rapid, simple and user-friendly analytical site for detection of HCG.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yansheng Li ◽  
Xiujin Men ◽  
Guowei Gao ◽  
Ye Tian ◽  
Yongqiang Wen ◽  
...  

Distance-based detection methods with quantitative readout are of great significance to point-of-care testing (POCT), which are low-cost, user-friendly and can be integrated into portable analytical devices. Here, we submit a...


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1464
Author(s):  
Florina Silvia Iliescu ◽  
Ana Maria Ionescu ◽  
Larisa Gogianu ◽  
Monica Simion ◽  
Violeta Dediu ◽  
...  

The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the development of diagnostic tools to manage the spread of disease. Currently, the “gold standard” involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2 detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR is labour-intensive, time-consuming, requires trained personnel and is not available in remote settings. This review summarizes and compares the available strategies for COVID-19: serological testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least, we address the advantages and limitations of these methods as well as perspectives in COVID-19 diagnostics. The effort is constantly focused on understanding the quickly changing landscape of available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid screening point of care testing. The last approach is key to aid the clinical decision-making process for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymptomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1635
Author(s):  
Arun K. Bhunia ◽  
Bledar Bisha ◽  
Andrew G. Gehring ◽  
Byron F. Brehm-Stecher

As the world population has grown, new demands on the production of foods have been met by increased efficiencies in production, from planting and harvesting to processing, packaging and distribution to retail locations. These efficiencies enable rapid intranational and global dissemination of foods, providing longer “face time” for products on retail shelves and allowing consumers to make healthy dietary choices year-round. However, our food production capabilities have outpaced the capacity of traditional detection methods to ensure our foods are safe. Traditional methods for culture-based detection and characterization of microorganisms are time-, labor- and, in some instances, space- and infrastructure-intensive, and are therefore not compatible with current (or future) production and processing realities. New and versatile detection methods requiring fewer overall resources (time, labor, space, equipment, cost, etc.) are needed to transform the throughput and safety dimensions of the food industry. Access to new, user-friendly, and point-of-care testing technologies may help expand the use and ease of testing, allowing stakeholders to leverage the data obtained to reduce their operating risk and health risks to the public. The papers in this Special Issue on “Advances in Foodborne Pathogen Analysis” address critical issues in rapid pathogen analysis, including preanalytical sample preparation, portable and field-capable test methods, the prevalence of antibiotic resistance in zoonotic pathogens and non-bacterial pathogens, such as viruses and protozoa.


2016 ◽  
Vol 1 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Robert D Nerenz ◽  
Jennifer R Bell ◽  
Nancy Montes de Oca ◽  
Joann Short ◽  
Theresa Mims ◽  
...  

Abstract Background Point-of-care (POC) urine qualitative human chorionic gonadotropin (hCG) devices are used to rapidly assess pregnancy status, but many of these devices are susceptible to false-negative results caused by increased concentrations of hCG β core fragment (hCGβcf) that does not contain hCGβcf. Methods Purified hCG was added to hCG-negative heparinized whole blood to generate samples with known hCG concentrations, and the resulting samples were used to evaluate device sensitivity, low-end reproducibility, high-dose hook effect, intermediate range performance, acceptable sample volume, acceptable hematocrit range, and lot-to-lot variation. Device performance was also prospectively evaluated in 40 pregnant and 40 nonpregnant women aged 18–44 years in a hospital-based clinic or an academic hospital emergency department. Results All device observations were positive using a whole blood sample containing a plasma hCG concentration of 2.2 × 106 IU/L, and all device observations were positive from18 IU/L to 1.2 × 103 IU/L and from 2.5 × 104 IU/L to 2.2 × 106 IU/L. Three invalid results were observed in the intermediate range because of decreased control line intensity. The minimum sample volume was 30 μL, and maximum hematocrit was 46%. In 40 pregnant and 40 nonpregnant women aged 18–44 years, the device generated 100% concordance with urine qualitative and plasma quantitative test results. Conclusions The ADEXUSDx™ hCG test demonstrates acceptable performance for the determination of pregnancy status using capillary fingerstick samples.


RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58460-58466 ◽  
Author(s):  
Syazana Abdullah Lim ◽  
Hiroyuki Yoshikawa ◽  
Eiichi Tamiya ◽  
Hartini Mohd Yasin ◽  
Minhaz Uddin Ahmed

This study describes a highly sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin (hCG) that uses gold nanoparticles (AuNP) as the electrochemical label and graphene as electrode material.


2009 ◽  
Vol 55 (7) ◽  
pp. 1389-1394 ◽  
Author(s):  
Ann M Gronowski ◽  
Mark Cervinski ◽  
Ulf-Håkan Stenman ◽  
Alison Woodworth ◽  
Lori Ashby ◽  
...  

Abstract Background: During pregnancy, human chorionic gonadotropin (hCG) immunoreactivity in urine consists of intact hCG as well as a number of hCG variants including the core fragment of hCGβ (hCGβcf). We identified 3 urine specimens with apparent false-negative results using the OSOM® hCG Combo Test (Genzyme Diagnostics) qualitative hCG device and sought to determine whether an excess of 1 of the fragments or variants might be the cause of the interference. Methods: We measured concentrations of hCG variants in the urine from 3 patients with apparent false-negative hCG results. Purified hCG variants were added to urines positive for hCG and tested using the OSOM, ICON® 25 hCG (Beckman Coulter), and hCG Combo SP® Brand (Cardinal Health) devices. Results: Dilution of these 3 urine samples resulted in positive results on the OSOM device. Quantification of hCG variants in each of the 3 patient urine specimens demonstrated that hCGβcf occurred in molar excess of intact hCG. Addition of purified hCGβcf to hCG-positive urines caused false-negative hCG results using the OSOM and ICON qualitative urine hCG devices. Conclusions: Increased concentrations of hCGβcf can cause false-negative results on the OSOM and ICON qualitative urine hCG devices. .


Sign in / Sign up

Export Citation Format

Share Document