scholarly journals Comparative analysis of results of numerical simulation of cyber-physical biosensor systems on the basis of lattice differential equations

Author(s):  
A. Sverstiuk
2013 ◽  
Vol 710 ◽  
pp. 13-16
Author(s):  
Ping Guan ◽  
Yan Zhang ◽  
Di Cui

Shape memory alloy (SMA) as an effective alternative to steel has received much attention. The constitutive model of SMA has raped developed for nearly 10 years, such as Boyd and Lagoudas model, Auricchio model, etc. However, a number of constitutive models were more complex, and not easily applied to engineering. In order to study SMA concrete pullout test using numerical simulation software, the tensile property of superelastic SMA was studied in this paper, different units (SOLID185 and LINK8) were simulated at the same time. Through the comparative analysis of results of different constitutive models, an easier used constitutive model of SMA was obtained. Combining with the numerical case, it shows that link8 is more convenient and accurate to simulates SMA.


Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2013 ◽  
Vol 397-400 ◽  
pp. 270-273
Author(s):  
Ying Li ◽  
Xiao Bin Li ◽  
Yu Wang ◽  
Wei Zhang

Blast wave is numerical simulated based on FCT method. According to the comparative analysis, taking Henrych empirical formula as a standard, FCT method is more accuracy than Godunov method. Moreover, it has been found that the numerical accuracy is insufficient when the distance is small, it is necessary to develop and modify the numerical method continuously.


2011 ◽  
Vol 181-182 ◽  
pp. 366-371
Author(s):  
Hui Liu ◽  
Yan Qiang Li

The micro particle brings much harm to some industrials, agriculture and human activities. The mechanical models of micro particle adhesion to the surface and the control, disposal technology have become very important for prevention from particle aggradations. For the sake of deeply comprehending and researching the adhesion mechanism as well as kinematics characteristic, numerical simulation of particle adhesion was made based on compute simulation package, the analysis of results and relevant comparison demonstrate that it can well simulate actual state and the results of simulation show that the capillary force (Fc) is the biggest, by contrast, the electrostatic force (Fes) is the smallest. Further more, it has some valuable instructions and helpful references for control of micro-particle adhesion to surface. At last, the outlook of issue was put forward.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Sign in / Sign up

Export Citation Format

Share Document