scholarly journals Effects of Structural Parameters on Seismic Behaviour of Historical Masonry Minaret

Author(s):  
Barış Erdil ◽  
Mücip Tapan ◽  
İsmail Akkaya ◽  
Fuat Korkut

The October 23, 2011 (Mw = 7.2) and November 9, 2011 (Mw = 5.6) earthquakes increased the damage in the minaret of Van Ulu Mosque, an important historical masonry structure built with solid bricks in Eastern Turkey, resulting in significant shear cracks. It was found that since the door and window openings are not symmetrically placed, they result in unsymmetrical stiffness distribution. The contribution of staircase and the core on stiffness is ignorable but its effect on the mass is significant. The pulpit with chamfered corner results in unsymmetrical transverse displacements. Brace wall improves the stiffness however contributes to the unsymmetrical behaviour considerably. The reason for the diagonal cracks can be attributed to the unsymmetrical brace wall and the chamfered pulpit but the effect of brace wall is more pronounced. After introducing the cracks, a new model was created and calibrated according to the results of Operational Modal Analysis. Diagonal cracks were found to be likely to develop under earthquake loading. Drifts are observed to increase significantly upon the introduction of the cracks.

Author(s):  
Emin Hökelekli ◽  
Ali Demir ◽  
Emre Ercan ◽  
Halil Nohutçu ◽  
Abdurrahman Karabulut

Operational Modal Analysis (OMA) method is frequently used in order to determine dynamical properties of historical masonry structures. In this study, damage pattern of historical Alaca minaret which is selected as application is investigated under different ground motions by updating finite element models (FEM) depending on operational modal analysis test. Initial Finite element model was prepared in ABAQUS V10 program and numerical dynamic characteristics of minaret were determined. In addition, experimental dynamic properties of minaret were provided by operational modal analysis. Initial numerical model of brick masonry structure was calibrated via OMA method. Then, linear and non-linear seismic analyses of calibrated FEM of historical minaret were performed by using different earthquakes acceleration records that occurred in Turkey. Concrete Damage Plasticity model was taken into account in non-linear seismic analyses. As a result of the analyses, it is concluded that the stresses obtained with linear analyses aren’t as realistic as the non-linear analyses results and the earthquakes can cause some damages in the minaret.  


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Romero ◽  
Pablo Pachón ◽  
Víctor Compán ◽  
Margarita Cámara ◽  
Francisco Pinto

Today’s society is sensitive to the architectural heritage conservation. This implies to perform works to maintain these buildings and to assure their structural security. In the last years, the structural analysis of historical masonry constructions has experienced a great progress, thanks to the use of techniques based on the study of the dynamic properties of building structures. In this context, changes on the structural health state of a building are one of the elements that can be assessed considering changes on their dynamic properties. This is useful to evaluate the effectiveness of structural interventions on this kind of buildings by analysing these properties before and after it. This paper focuses on the Jura Chapel, in Jerez de la Frontera (Spain). This chapel is part of San Juan de los Caballeros Church and is dated from the 15th century. In 2015 and after the identification of some structural damages in the chapel vault, an intervention was initiated to improve its structural behaviour and to recover its original appearance. The present work reports the evaluation of the effects that this intervention has on the structural health state of the building, using nondestructive techniques based on ambient vibration tests (AVT) and Operational Modal Analysis (OMA). The AVT were performed for both prerestored and restored states and under environmental loads. A discussion about the validity of doing AVT from extrados when a vault presents disconnection between ribs and web is included in the paper. As a result, the first five natural frequency values have increased while the corresponding mode shapes have not changed significantly. This proves a structural health improvement caused by the repairing process without changing the original behaviour of the structure. This work shows OMA capabilities for evaluating the effectiveness of intervention works on the health state of a historical masonry structure.


2010 ◽  
Vol 24 (5) ◽  
pp. 1291-1305 ◽  
Author(s):  
L.F. Ramos ◽  
L. Marques ◽  
P.B. Lourenço ◽  
G. De Roeck ◽  
A. Campos-Costa ◽  
...  

2017 ◽  
Vol 747 ◽  
pp. 440-447 ◽  
Author(s):  
Elisa Bassoli ◽  
Marianna Forghieri ◽  
Loris Vincenzi ◽  
Marco Bovo ◽  
Claudio Mazzotti

This paper addresses the modal and structural identification of the historical masonry bell tower of Ficarolo, in Italy. After the seismic sequence of May 2012, the tower reported a serious damage pattern. Retrofitting interventions were designed and they mainly consisted in the rebuilding of cracked zones and the strengthening of masonry walls with carbon bars embedded in the masonry with epoxy resin. Afterwards, a continuous dynamic monitoring system has been installed on the tower. From the recorded structural response under ambient excitation, the dynamic characteristics of the tower are identified using Operational Modal Analysis techniques. Results of the first months of continuous monitoring are presented in this paper. Moreover, in order to analyse the evolution of the structural behaviour, the effect of changing temperature on the identified natural frequencies is investigated. The experimental modal parameters are also used to identify the elastic modulus of the reinforced masonry through the calibration of a Finite Element (FE) model of the tower. In addition, the influence of the soil-foundation system on the structural behaviour is evaluated. The calibration procedure is performed adopting an improved surrogate-assisted evolutionary strategy. The calibrated FE model can be adopted to simulate the structural response to far-field earthquakes. Moreover, the monitoring system can give valuable information on the structural behaviour and the structural health in the case of seismic events.


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Sign in / Sign up

Export Citation Format

Share Document