scholarly journals Effect of Cohesive Contact of Backfill with Arch and Spandrel Walls of a Historical Masonry Arch Bridge on Seismic Response

Author(s):  
Emin Hokelekli

Historical masonry bridges generally consist of arches, spandrels walls, backfills, piers and foundations. Under the effects such as earthquake, flood and wind, the most vulnerable structural elements of bridges against out-of-plane seismic motions are spandrel walls. Increasing length and height of spandrel walls increases the vulnerability of the bridge under loads in vertical and transverse directions. The aim of this research is to examine the in-plane and out-of-plane non-linear structural responses of the spandrel walls of a historical masonry bridge. For this purpose, a historical masonry arch bridge with built in 1787 in Bartın-Turkey was chosen as the subject structure. The 3D finite element model and nonlinear seismic analyses of the bridge were performed with ABAQUS. Initially, the backfill-spandrels and backfill-arch interfaces of the bridge were modeled with and without cohesive contact. The non-linear material responses of the spandrel walls and the arch units were defined using Concrete Damage Plasticity material model and those of the backfill unit were defined with Mohr-Coulomb material model. The east-west component of 17 August 1999 Kocaeli Earthquake’s acceleration records was used in the analyses. The east-west acceleration component was applied on the bridge in-plane and out-of-plane directions during the time-history non-linear seismic analysis of the bridge. The results obtained from the analyses with and without the consideration of cohesive contact were compared to evaluate the seismic responses of the spandrel walls. As a result, cohesive interface behavior was found to significantly affect the spandrel wall response under in- plane and out-of-plane seismic forces.

2013 ◽  
Vol 8 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Andris Paeglītis ◽  
Ainārs Paeglītis ◽  
Inta Vītiņa ◽  
Silvija Igaune

2019 ◽  
Vol 1 (1) ◽  
pp. 5-11
Author(s):  
Emre Alpaslan

Experimental investigations of large and complex structural systems can be carried out by reduced-scale models in terms of convenience, time-saving and economical. This can be applied to different fields of study such as vibration, impact and explosion problems in structural engineering and allows reliable analysis to understand the static and dynamic behavior of real structures called a prototype. This study aims that a 1/3 reduced-scale model is created in the laboratory environment considering similitude requirements by selecting a single span historical masonry arch bridge as a prototype structure. For this purpose, the Operational Modal Analysis (OMA) Technique is utilized for experimental study to determine modal parameters of the prototype and model bridges. The similarity of the dynamic behavior of the reduced-scale bridge model and prototype are investigated. The analysis of the similarity in the dynamic behavior of the prototype and model bridge consists of comparing the natural frequencies and mode shapes by utilizing the modal assurance criterion (MAC) corresponding to the translational, bending and torsional modes. As a result of the study, it is concluded that the dynamic behavior of the reduced-scale bridge model is similar to the dynamic behavior of the prototype bridge.


2017 ◽  
Vol 3 (3) ◽  
pp. 108
Author(s):  
Emre Alpaslan ◽  
Burcu Dinç ◽  
Kemal Hacıefendioğlu ◽  
Gökhan Demir ◽  
Olgun Köksal

This study aims to investigate modal parameters such as mode shapes, natural frequencies and damping ratios of a reduced scale one-span historical masonry arch bridge constructed in laboratory conditions by performing numerical and experimental analysis. Sarp Dere historical masonry bridge, in Ordu, Ulubey, has 15.5m in length and 4.75m in width was chosen as a prototype model. The reduced-scale bridge model and structural details were carried out in the scale of 1:12.5. Operational Modal Analysis (OMA) technique was used for experimental study. The experimental modal parameters of the bridge model were figured out by using Enhanced Frequency Domain Decomposition (EFDD). ANSYS software was used to create 3D finite element (FE) model and to expose the analytical modal parameters of the reduced-scaled bridge model. Moreover, FE model of the reduced-scale bridge model was calibrated based on the experimental results by using the Response Surface based FE model calibration technique to obtain more accurate results. The analysis results of experimental, initial and calibrated FE model were compared. It is noted that there are significant differences between the modal parameters obtained from experimental and initial FE model. Model calibration techniques are beneficial to get a more reasonable FE model.


1995 ◽  
Vol 28 (6) ◽  
pp. 377-386 ◽  
Author(s):  
D.M. Armstrong ◽  
A. Sibbald ◽  
C.A. Fairfield ◽  
M.C. Forde

2019 ◽  
Vol 817 ◽  
pp. 50-56
Author(s):  
Deborah Briccola ◽  
Matteo Bruggi ◽  
Alberto Taliercio

A novel approach is adopted to assess the static behavior of vaulted structures, such as cantilevered masonry stairs, assuming a linear elastic no-tension material model. Masonry is substituted by an equivalent orthotropic material whose elastic properties vary locally and with a negligible stiffness where tensile strain occurs. In order to recover a tension-free state of stress, an energy-based minimization procedure is carried out to establish the distribution and the orientation of the equivalent material for a given compatible load. The capability of the approach in defining purely compressive stress solutions in masonry walls under dead load and both in-plane and out-of-plane live loads has already been assessed. A meaningful application to a cantilevered masonry stair is here presented; the results are in good agreement with those available in the technical literature on historical masonry constructions.


Sign in / Sign up

Export Citation Format

Share Document