scholarly journals The The Effect of Continuous Suspension Constraint on the Free Vibration and Buckling of a Beam

Author(s):  
Róbert K. Németh ◽  
Bilal M. A. Alzubaidi

In this paper, the free vibration and the buckling of a continuously suspended simply-supported beam are analyzed. A semi-analytical approach is used to calculate the natural circular frequencies and the critical forces of the beam. The length of the suspension is used as a parameter, and the natural circular frequencies and the critical forces are presented in a frequency map or a buckling map. The maps are analyzed in view of the trivial solutions, and the frequency map is compared to the map of discrete cable-stayed beams. Finally, for the validation of the results a numerical, finite element analysis is performed.

2011 ◽  
Vol 90-93 ◽  
pp. 1015-1018
Author(s):  
Wen Zhang ◽  
De Can Yang

The dynamic response of simple supported beam under the moving load is analyzed. The finite element analysis software MIDAS is used to simulate the process of when the uniform constant force moving through the simply supported beam. The first 5 natural frequencies of simply supported beam are obtained with the modal analysis and compared with the analytical solution. The feasibility of the finite element method is verified.


2017 ◽  
Vol 23 (5) ◽  
pp. 3951-3954
Author(s):  
Syaiful Azmirul Mohd Rozlan ◽  
Izzuddin Zaman ◽  
Shiau Wei Chan ◽  
Bukhari Manshoor ◽  
Amir Khalid ◽  
...  

2021 ◽  
Vol 15 (58) ◽  
pp. 151-165
Author(s):  
Ehab Samir Mohamed Mohamed Soliman

This paper investigated the static and dynamic behaviors of isotropic cracked simply supported beam using finite element analysis (FEA), ANSYS software. Modal and harmonic vibration analysis of intact and damaged beam were performed in order to extract mode shapes of bending vibration, natural frequencies and obtain frequency response diagram. Static finite element analysis of undamaged and damaged simply supported beam was carried out to determine zero frequency deflection, then stiffness of intact and cracked beam was computed using conventional formula. Crack damage severity of damaged beam was calculated and it is noticed that as crack position is increased from left hand support of beam up to central point and crack depth is increased, then crack damage severity increases. The effect of mode shape pattern is investigated and it is found that the amount of decreasing of natural frequency is proportional to the normalized mode shape at position of crack. The exhibited correlation between results for damaged beam revealed that crack damage severity is proportional to zero frequency deflection and inversely proportional to first mode frequency.


2011 ◽  
Vol 94-96 ◽  
pp. 902-908 ◽  
Author(s):  
Zheng Xin Zhang ◽  
Fang Lin Huang ◽  
Yan Bin Wu

This paper presents a method to simulate the mechanical behavior of magnetorheological fluid (MRF) subjected to magnetic field in the pre-yield region in ANSYS. The main idea is to devide an MRF element into two coincident elements, one of them has density and viscosity without shear modulus while another has shear modulus without density and viscosity. Taking a simply supported MRF sandwich beam as an example, good results and reasonable conclusion are obtained by comparing the results with the theoretical analysis and experimental study of Ref.[1]. The validity of finite element analysis is also investigated in this paper. At present, there is no exactly appropriate element type in ANSYS to model MRF, this kind of method called coincident elements method (CEM) will provide a new way to model the structures with MRF or MR dampers in ANSYS, and it also has reference roles for the future development of related elements in ANSYS.


Sign in / Sign up

Export Citation Format

Share Document