Finite Element Analysis on Dynamic Response of Bridge Structures under Moving Loads with Uniform Speed

2011 ◽  
Vol 90-93 ◽  
pp. 1015-1018
Author(s):  
Wen Zhang ◽  
De Can Yang

The dynamic response of simple supported beam under the moving load is analyzed. The finite element analysis software MIDAS is used to simulate the process of when the uniform constant force moving through the simply supported beam. The first 5 natural frequencies of simply supported beam are obtained with the modal analysis and compared with the analytical solution. The feasibility of the finite element method is verified.

2019 ◽  
Vol 19 (04) ◽  
pp. 1950042
Author(s):  
Salih Demirtas ◽  
Hasan Ozturk ◽  
Mustafa Sabuncu

This paper investigates the dynamic responses of multi-bay frames with identical bay lengths subjected to a transverse single moving load and successive moving loads with a constant interval at a constant speed. The effects of the bay length and the speed of the moving load on the response of the multi-bay frame subjected to a single point load are investigated numerically by the finite element method. A computer code is developed by using MATLAB to perform the finite element analysis. The Newmark method is employed to solve for the dynamic responses of the multi-bay frame. With this, the dynamic response of the frame subjected to successive moving loads with a constant interval is investigated. Also, the resonance and cancellation speeds are determined by using the 3D relationship of speed parameter-force span length to beam length ratio-dynamic magnification factor and the associated contour lines. The maximum impact factor of a 1-bay frame and multi-bay frames under single moving load are determined at the specific speed parameters. Those values are independent of elastic modulus, area moment of inertia, beam/column lengths of the frame and also the number of bays forming the frame. It is also found that the first resonance response in the vertical direction of the frame is related to the second mode of vibration.


Author(s):  
Róbert K. Németh ◽  
Bilal M. A. Alzubaidi

In this paper, the free vibration and the buckling of a continuously suspended simply-supported beam are analyzed. A semi-analytical approach is used to calculate the natural circular frequencies and the critical forces of the beam. The length of the suspension is used as a parameter, and the natural circular frequencies and the critical forces are presented in a frequency map or a buckling map. The maps are analyzed in view of the trivial solutions, and the frequency map is compared to the map of discrete cable-stayed beams. Finally, for the validation of the results a numerical, finite element analysis is performed.


2017 ◽  
Vol 23 (5) ◽  
pp. 3951-3954
Author(s):  
Syaiful Azmirul Mohd Rozlan ◽  
Izzuddin Zaman ◽  
Shiau Wei Chan ◽  
Bukhari Manshoor ◽  
Amir Khalid ◽  
...  

2011 ◽  
Vol 462-463 ◽  
pp. 1013-1018
Author(s):  
Mamtimin Gheni ◽  
Wei Bing Liu ◽  
Lie Yu

In this paper, in order to overcome the technical difficulty of center level height of Periodic Symmetric Struts Support (PSSS) by using the test in the field and reduce the high cost of testing, the method of the finite element analysis by considering thermal condition and the dynamic response is used and the center level height of PSSS is evaluated. Some relations for center level height changing process of PSSS were found and some parametric effects are obtained for the stability analysis of gas turbine by changing the number of struts support and angle.


2021 ◽  
Vol 71 (2) ◽  
pp. 161-170
Author(s):  
Adam Faircloth ◽  
Loic Brancheriau ◽  
Hassan Karampour ◽  
Stephen So ◽  
Henri Bailleres ◽  
...  

Abstract Transverse modal analysis of timber panels is a proven effective alternative method for approximating a material's elastic constants. Specific testing configurations, such as boundary conditions (BC) and location of sensor and impact, play a critical role in the accuracy of the results obtained from the experimental assessment. This article investigates signal-specific details, such as the signal quality factor, that directly relate to the damping properties and internal friction as well as frequency shifting obtained from six different BCs. A freely supported (FFFF), opposing minor sides (shorter length) simply supported, and major sides (longest length) free (SFSF), as well as the reverse of the SFSF configuration with minor sides free and major lengths simply supported (FSFS) and all sides simply supported (SSSS) setup, are investigated. Variations into the proposed methods used to achieve an FFFF supported system are also considered. A combination of experimental testing in parallel with finite element analysis was conducted to re-create the setup that would be used within a manufacturing facility for nondestructive assessment of full-size cross-laminated timber panels. The differences between all BC configurations for their resonance frequency quality and location indicate that a freely supported system provides higher-resolution results, good comparison of less than 10 percent error with the finite element analysis and experimental results, and advantages in a simple experimental setup for the intended application.


2011 ◽  
Vol 201-203 ◽  
pp. 121-125
Author(s):  
Wei Tao Shi ◽  
Jian Li ◽  
Jun He

The weighing platform of the truck scale is a load-bearer, which is used for bearing a load. Its structure has many forms, in this paper, the finite element analysis of a structure with u-beam which is currently the most widely used for different loading modes, the traditional method of structural analysis of truck scale is to simplily the platform as a simply supported beam. As the model is too simplified, the result of this method will be unreliable and it cannot make part analysis about stress and strain . In this research, ANSYS was used to model, and loaded analysis. Through different loading, get the structure of weighing platform stress distribution and deformation. By analysing,we give reasonable proposals and provide valuable reference for the design and production of truck scale .


2021 ◽  
Vol 15 (58) ◽  
pp. 151-165
Author(s):  
Ehab Samir Mohamed Mohamed Soliman

This paper investigated the static and dynamic behaviors of isotropic cracked simply supported beam using finite element analysis (FEA), ANSYS software. Modal and harmonic vibration analysis of intact and damaged beam were performed in order to extract mode shapes of bending vibration, natural frequencies and obtain frequency response diagram. Static finite element analysis of undamaged and damaged simply supported beam was carried out to determine zero frequency deflection, then stiffness of intact and cracked beam was computed using conventional formula. Crack damage severity of damaged beam was calculated and it is noticed that as crack position is increased from left hand support of beam up to central point and crack depth is increased, then crack damage severity increases. The effect of mode shape pattern is investigated and it is found that the amount of decreasing of natural frequency is proportional to the normalized mode shape at position of crack. The exhibited correlation between results for damaged beam revealed that crack damage severity is proportional to zero frequency deflection and inversely proportional to first mode frequency.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


Sign in / Sign up

Export Citation Format

Share Document