scholarly journals Adaptability and yield stability of soybean genotypes by mean Eberhart and Russell methods, artificial neural networks and centroid

2021 ◽  
Vol 8 ◽  
pp. 1-13
Author(s):  
Mário Carmo Oda ◽  
Tuneo Sediyama ◽  
Cosme Damião Cruz ◽  
Moysés Nascimento ◽  
Éder Matsuo

The soybean crop is prominent in national and international scenarios. A large part of the world production of soybean is cultivated in Brazil and this has been possible due to the performance of different technological areas, among them genetics and plant breeding. Soybean breeding has acted in the development and launch of new cultivars and for this it is required the studies of interaction genotypes x environments and those of adaptability and stability. Thus, the objective was to evaluate the adaptability and phenotypic stability of the grain yield of late-cycle soybean genotypes. Five experiments were conducted in the state of Minas Gerais, each of which was considered as an environment. In each, 17 soybean genotypes were evaluated in a randomized block design with three repetitions, for grain yield, in kg ha-1. The data were analyzed by means of individual (each environment) and joint analysis of variance. Subsequently, analyses of adaptability and phenotypic stability were performed using the methods of Eberhart and Russell (1966), Artificial Neural Networks (Nascimento et al., 2013) and Centroid (Rocha, Muro‑Abad, Araujo, & Cruz, 2005). The results indicated the classification of the analyzed genotypes for unfavorable, general or favorable adaptability, with high or low stability. DM-339 is indicated for favorable environments and UFV-18 (Patos de Minas), UFV91-651226, UFV99-8552093, UFV01-871375B, UFV01-66322813 and UFV99-8552099 are indicated as general adaptability, considering the three methods of adaptability and stability analysis.

2020 ◽  
Vol 8 (4) ◽  
pp. 610
Author(s):  
Osmar Bruneslau Scremin ◽  
José Antonio Gonzalez da Silva ◽  
Ivan Ricardo Carvalho ◽  
Ângela Teresinha Woschinski De Mamann ◽  
Adriana Roselia Kraisig ◽  
...  

Artificial neural networks simulating oat grain yield throughout the crop cycle, can represent an innovative proposal regarding management and decision making, reducing costs and maximizing profits. The objective of the study is to develop biomathematical models via artificial neural networks, capable of predicting the productivity of oat grains by meteorological variables, nitrogen management and biomass obtained throughout the development cycle, making it possible to plan more efficient and sustainable managements. In each cultivation system (soybeans/oats; maize/oats), two experiments were carried out in 2017 and 2018, one for analyzing grain yield and the other for cutting every 30 days to obtain biomass. The experiments were conducted in a randomized block design with four replications for four levels of N-fertilizer (0, 30, 60 and 120 kg ha-1), applied in the stage of the 4th expanded leaf. The use of the artificial neural network makes it possible to predict grain yield by harvesting the biomass obtained at any stage of oat development, together with the handling of the nitrogen dose and meteorological information during cultivation. Therefore, a new tool to aid the simulation of oat productivity throughout the cycle, facilitating faster decision making for more efficient and sustainable management with the crop.


2021 ◽  
Vol 23 ◽  
pp. 100313
Author(s):  
Nicholas A. Thurn ◽  
Taylor Wood ◽  
Mary R. Williams ◽  
Michael E. Sigman

2017 ◽  
Vol 70 (4) ◽  
pp. 492-498 ◽  
Author(s):  
Leandro S Santos ◽  
Roberta M D Cardozo ◽  
Natália Moreiria Nunes ◽  
Andréia B Inácio ◽  
Ana Clarissa dos S Pires ◽  
...  

2006 ◽  
Vol 41 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Robespierre Santos ◽  
Horst G. Haack ◽  
Des Maddalena ◽  
Ross D. Hansen ◽  
John E. Kellow

2016 ◽  
Vol 19 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Nina Pavlin-Bernardić ◽  
◽  
Silvija Ravić ◽  
Ivan Pavao Matić ◽  
◽  
...  

Artificial neural networks have a wide use in the prediction and classification of different variables, but their application in the area of educational psychology is still relatively rare. The aim of this study was to examine the accuracy of artificial neural networks in predicting students’ general giftedness. The participants were 221 fourth grade students from one Croatian elementary school. The input variables for artificial neural networks were teachers’ and peers’ nominations, school grades, earlier school readiness assessment and parents’ education. The output variable was the result on the Standard Progressive Matrices (Raven, 1994), according to which students were classified as gifted or non-gifted. We tested two artificial neural networks’ algorithms: multilayer perceptron and radial basis function. Within each algorithm, a number of different types of activation functions were tested. 80% of the sample was used for training the network and the remaining 20% to test the network. For a criterion according to which students were classified as gifted if their result on the Standard Progressive Matrices was in the 95th centile or above, the best model was obtained by the hyperbolic tangent multilayer perceptron, which had a high accuracy of 100% of correctly classified non-gifted students and 75% correctly classified gifted students in the test sample. When the criterion was the 90th centile or above, the best model was also obtained by the hyperbolic tangent multilayer perceptron, but the accuracy was lower: 94.7% in the classification of non-gifted students and 66.7% in the classification of gifted students. The study has shown artificial neural networks’ potential in this area, which should be further explored. Keywords: gifted students, identification of gifted students, artificial neural networks


1996 ◽  
Vol 57 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Abdelgadir A. Abuelgasim ◽  
Sucharita Gopal ◽  
James R. Irons ◽  
Alan H. Strahler

Sign in / Sign up

Export Citation Format

Share Document