scholarly journals The Effect of Residual Stresses on Stress Corrosion Cracking of Stainless Steel Tubes

1980 ◽  
Vol 29 (5) ◽  
pp. 227-232
Author(s):  
Hiroshi Imagawa ◽  
Ituo Yamaoka ◽  
Akira Yamaguchi
Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2416
Author(s):  
Yun Luo ◽  
Wenbin Gu ◽  
Wei Peng ◽  
Qiang Jin ◽  
Qingliang Qin ◽  
...  

In this paper, the effect of repair welding heat input on microstructure, residual stresses, and stress corrosion cracking (SCC) sensitivity were investigated by simulation and experiment. The results show that heat input influences the microstructure, residual stresses, and SCC behavior. With the increase of heat input, both the δ-ferrite in weld and the average grain width decrease slightly, while the austenite grain size in the heat affected zone (HAZ) is slightly increased. The predicted repair welding residual stresses by simulation have good agreement with that by X-ray diffraction (XRD). The transverse residual stresses in the weld and HAZ are gradually decreased as the increases of heat input. The higher heat input can enhance the tensile strength and elongation of repaired joint. When the heat input was increased by 33%, the SCC sensitivity index was decreased by more than 60%. The macroscopic cracks are easily generated in HAZ for the smaller heat input, leading to the smaller tensile strength and elongation. The larger heat input is recommended in the repair welding in 304 stainless steel.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2434 ◽  
Author(s):  
Xiaodong Hu ◽  
Hao-Yong Jiang ◽  
Yun Luo ◽  
Qiang Jin ◽  
Wei Peng ◽  
...  

The repair reinforcement height is an important parameter of repair welding, which may have a great influence on structural integrity. In this paper, the effects of repair welding reinforcement height on the microstructure, microhardness, residual stresses and stress corrosion cracking (SCC) behavior of a 304 stainless steel-repaired joint were investigated by experimentation and simulation. With an increase of the repair weld reinforcement height, the δ ferrite content in weld and fusion zone is obviously reduced, and the ferrite shape is gradually changed from the skeleton to the worm shape. With the increase of repair welding reinforcement height, the microhardness and residual stresses decrease gradually. The tensile strength and elongation for higher repair weld reinforcement height are larger than those with lower repair weld reinforcement height. The higher the repair weld reinforcement height, the harder it is for SCC to occur. The repair welding in 304 stainless steel is recommended to be repaired no more than two times.


2013 ◽  
Vol 794 ◽  
pp. 564-574 ◽  
Author(s):  
Swati Ghosh Acharyya ◽  
M. Kiran Kumar ◽  
Vivekanand Kain

The susceptibility of non sensitized 304L stainless steel (SS) components towards stress corrosion cracking (SCC) has been studied here in the light of the significant role played bysurface working operations. The plant experience shows that the fracture surfaces of non sensitized 304L stainless steel components have no signs of carbide precipitation. However, heavy plastic deformation has been evidenced in the form of high density of slip bands on the surface up to a depth of about 100 μm with high tensile residual stresses near the surface. The present study has established that the primary cause of the increase in SCC susceptibility is the heavy plastic deformation near the surface and high magnitude of tensile residual stresses which is a consequence of the surface finishing operations like machining and grinding. In this study, solution annealed 304L stainless steel has been subjected to a) surface working operations like machining and grinding and b) bulk deformation operations such as 10 % cold rolling operation. The materials in different conditions where then subjected to detailed a) microstructural characterisation, b) electrochemical characterisation and c) tests for determining the stress corrosion cracking susceptibility. The distinct differences in the micro structure as a result of bulk deformation vs. surface deformation of 304L austenitic stainless steel were highlighted and correlated to the susceptibility towards stress corrosion cracking. The effect of surface working on the nature and composition of high temperature (300 °C and 10 MPa) oxide formed on 304L stainless steel has been studied in-situ by contact electric resistance (CER) and electrochemical impedance spectroscopy measurements using controlled distance electrochemistry technique in high purity water (conductivity < 0.1 μScm-1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlighted the distinct differences in the oxidation behaviour of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance.


Author(s):  
Jeremy E. Scheel ◽  
Douglas J. Hornbach ◽  
Paul S. Prevey

Stress corrosion cracking (SCC) has been observed for decades in austenitic alloy weldments such as type 304 stainless steel as well as in Ni based alloy weldments including Alloy 600 and 690. SCC continues to be a primary maintenance concern for many components in both pressurized water reactors (PWR) and boiling water reactors (BWR). SCC is understood to be the result of a combination of susceptible material, exposure to a corrosive environment, and tensile stress above a threshold. Tensile residual stresses developed by prior machining and welding can accelerate SCC. A surface treatment is needed that can reliably produce deep compressive residual stresses in austenitic and Ni based alloy weldments in order to prevent SCC. Post-weld surface enhancement processing via low plasticity burnishing (LPB) can be used to introduce deep compression into tensile fusion welds thereby mitigating SCC. LPB has been developed as a rapid and inexpensive surface enhancement method adaptable to existing CNC machine tools or robots. Deep compressive residual stresses produced by LPB are designed to reduce the surface, and near surface stress state to well below the SCC threshold. Residual stress results are shown for 304 stainless steel, Alloy 22 and Alloy 718. SCC test results comparing LPB treated and un-treated 304 stainless steel weldments are presented. Results show that the deep compression produced by LPB eliminates SCC in austenitic weldments.


Author(s):  
S. E. Marlette ◽  
A. Udyawar ◽  
J. Broussard

For several decades the nuclear industry has used structural weld overlays (SWOL) to repair and mitigate cracking within pressurized water reactor (PWR) components such as nozzles, pipes and elbows. There are two known primary mechanisms that have led to cracking within PWR components. One source of cracking has been primary water stress corrosion cracking (PWSCC). Numerous SWOL repairs and mitigations were installed in the early 2000s to address PWSCC in components such as pressurizer nozzles. However, nearly all of the likely candidate components for SWOL repairs have now been addressed in the industry. The other cause for cracking has been by fatigue, which usually results from thermal cycling events such as leakage caused by a faulty valve close to the component. The PWR components of most concern for fatigue cracking are mainly stainless steel. Thus, ASME Section XI Code Case N-504-4 would be a likely basis for SWOL repairs of these components, although this Code Case was originally drafted to address stress corrosion cracking (SCC) in boiling water reactors (BWR). N-504-4 includes the requirements for the SWOL design and subsequent analyses to establish the design life for the overlay based on predicted crack growth after the repair. This paper presents analysis work performed using Code Case N-504-4 to establish the design life of a SWOL repair applied to a boron injection tank (BIT) line nozzle attached to the cold leg of an operating PWR. The overlay was applied to the nozzle to address flaws found within the stainless steel base metal during inservice examination. Analyses were performed to calculate the residual stresses resulting from the original fabrication and the subsequent SWOL repair. In addition, post-SWOL operating stresses were calculated to demonstrate that the overlay does not invalidate the ASME Section III design basis for the nozzle and attached pipe. The operating and residual stresses were also used for input to a fatigue crack growth (FCG) analysis in order to establish the design life of the overlay. Lastly, the weld shrinkage from the application of overlay was evaluated for potential impact on the attached piping, restraints and valves within the BIT line. The combined analyses of the installed SWOL provide a basis for continued operation for the remaining life of the plant.


Sign in / Sign up

Export Citation Format

Share Document