scholarly journals A phase I/II study of the combination of quizartinib with azacitidine or low-dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome

Haematologica ◽  
2021 ◽  
Author(s):  
Mahesh Swaminathan ◽  
Hagop M Kantarjian ◽  
Mark Levis ◽  
Veronica Guerra ◽  
Gautam Borthakur ◽  
...  

FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutation in acute myeloid leukemia (AML) is associated with poor prognosis. We hypothesized that quizartinib, a selective and potent FLT3 inhibitor, with azacitidine (AZA) or low-dose cytarabine (LDAC) might improve the outcomes in patients with FLT3-ITD-mutated AML. In this open-label phase I/II trial, patients of any age receiving first-salvage treatment for FLT3-ITD AML or age >60 years with untreated myelodysplastic syndrome or AML were treated with quizartinib plus AZA or LDAC. Seventy-three patients were treated (34 frontline, 39 first-salvage). Among previously untreated patients, composite response (CRc) was achieved in 13/15 (87%, 8 CR, 4 Cri, 1 CRp) treated with quizartinib/AZA and 14/19 (74%, 1 CR, 8 CRi, 5 CRp) in quizartinib/LDAC. The median OS was 19.2 months for quizartinib/AZA and 8.5 months for quizartinib/LDAC cohort; RFS was 10.5 and 6.4 months, respectively. Among previously treated patients, 16 (64%) achieved CRc in quizartinib/AZA and 4 (29%) in quizartinib/LDAC. The median OS for patients treated with quizartinib/AZA and quizartinib/LDAC was 12.8 vs. 4 months, respectively. QTc prolongation grade 3 occurred in only 1 patient in each cohort. Quizartinib-based combinations, particularly with AZA, appear effective in both frontline and first-salvage for patients with FLT3-ITD-mutated AML and are well tolerated.

Leukemia ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Jorge E. Cortes ◽  
Florian H. Heidel ◽  
Andrzej Hellmann ◽  
Walter Fiedler ◽  
B. Douglas Smith ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 893-893 ◽  
Author(s):  
John Delmonte ◽  
Hagop M. Kantarjian ◽  
Michael Andreeff ◽  
Stefan Faderl ◽  
John J. Wright ◽  
...  

The critical importance of the Ras, VEGF, and FLT3 pathways in the pathogenesis of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) has been well established. FLT3 abnormalities, internal tandem duplication (ITD) and point mutations, occur in about 30% of pts with AML and the FLT3-ITD mutation independently confers poor prognosis. Sorafenib is an oral multikinase inhibitor targeting the above pathways and is highly potent against FLT3-ITD mutants (IC50 1–3 nM) (ASH abstract, 2006). We are conducting a phase I trial to evaluate the safety and efficacy of two different schedules of sorafenib. To date, 21 patients (pts) with refractory/relapsed AML (n=20) and high risk MDS (n=1) have been enrolled. Pts were randomized to sorafenib for 5 days per week for 21 days (arm A; n=11) or for 14 days every 21 days (arm B; n=10). In both arms the starting dose level (DL) is 200 mg twice daily. Successive dose levels are 600, 800, and 1200 mg daily in a standard 3+3 design. Peripheral blood (PB) and bone marrow (BM) samples were obtained for evaluation of FLT3 status and phosphorylated and total FLT3 and ERK expression. Median age is 62 years (range, 33–82), number of prior therapies 2 (range, 1–5), time from diagnosis to sorafenib treatment 9 months (range, 2–46), and median duration on study was 1.2 months (range, 0.1–3.4). Twenty pts are evaluable. 9/20 (45%) pts received ≤ 1 cycle of sorafenib because of disease progression (n=6), self-discontinuation (n=2), or no benefit (n=1), of whom 5 (56%) were FLT3-ITD negative, 3 (33%) were FLT3-ITD positive, and 1 (11%) was not tested. In contrast, 11/20 (55%) pts received > 1 cycle of sorafenib, of whom 8 (73%) were FLT3-ITD positive and 3 (27%) were FLT3-ITD negative; reasons for discontinuation were disease progression (n=5), self-discontinuation (n=2), stem cell transplant (n=2), or no benefit (n=2). Sorafenib has been well tolerated with 1 pt achieving a DLT of grade 3 hyperbilirubinemia at the 800 mg daily dose in arm B, but the MTD has not been reached; this cohort has been expanded. The only other grade 3 toxicity has been pleural effusion at the 600 mg daily dose in arm A, not considered a DLT because it occurred during cycle 2. A ≥ 50% reduction in PB or BM blasts was obtained in 11/20 (55%) pts. 9/11 (82%) pts harbored the FLT3-ITD mutation and had a median duration of response of 42 days (range, 15–87). In these 9 pts, the median PB absolute blast count at baseline and after maximal response to sorafenib was 10.3 (range, 0.2–18.7) and 0 (range, 0–1)(p=0.008). Median BM blast percentage at baseline and after maximal response to sorafenib was 72% (range, 14–96) and 42% (range, 12–58) (p=0.002), with 1 pt achieving a morphologic complete remission in the BM. Serial determinations of phosphorylation status following sorafenib (at 0, 2, 24,120 hours) in pts with the FLT3-ITD mutation demonstrated inhibition of phospho-FLT3 in 3/3 and phospho-ERK in 5/5 pts. In conclusion, sorafenib administration is safe in AML and appears to preferentially target the FLT3-ITD mutation. This study continues to accrue pts to define the MTD and it will be followed by combination studies of standard chemotherapy with sorafenib, with an emphasis on targeting pts with AML expressing the FLT3-ITD mutation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3949-3949
Author(s):  
Paolo Strati ◽  
Hagop M Kantarjian ◽  
Aziz Nazha ◽  
Gautam Borthakur ◽  
Naval G. Daver ◽  
...  

Abstract Background Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) affect primarily elderly pts. Their treatment with aggressive chemotherapy is frequently challenging. Moreover, pts with FLT3 mutations have very poor prognosis. We hypothesized that the combination of midostaurin, a FLT3 inhibitor, and 5-AZA, a hypomethylating agent, may be an effective and safe regimen. Methods Both untreated (8) and previously treated (36) pts with AML or MDS were eligible for this study, regardless of FLT3 mutation and prior exposure to FLT3 inhibitors. Pts received 5-AZA 75 mg/mq subcutaneously or intravenously on day 1-7 and midostaurin 25 mg bid (in cohort 1 of phase I) or 50 mg bid (in cohort 2 of Phase I and in Phase II) orally on day 8-21 during the first cycle and continuously thereafter, for 12 cycles of 28 days duration. Cytogenetic risk was defined according to MRC criteria. Differences between categorical variables were compared by the chi2 test. CR duration (CRD) was calculated from the time of CR achievement until relapse and estimated by the Kaplan-Meier method and compared by the log-rank test. Results Fourty-four pts were enrolled, 13 included in Phase I and 31 in Phase II. Baseline pts’ characteristics are shown in the Table. Thirty-eight pts (86%) received 50 mg bid of midostaurin, and 6 (14%; Phase I) received 25 mg bid. The median number of administered cycles was 2 (1-9). Grade 3-4 hematological toxicities consisted of 95% neutropenia, 64% anemia and 93% thrombocytopenia. Grade 3-4 non-hematological toxicities consisted of 45% infections, 23% hypokalemia, 16% hyponatremia, 7% reduction in ejection fraction, 7% hyperuricemia, 4% hyperglycemia, 4% nausea/vomiting, 4% QTc prolongation, 4% hyperbilirubinemia, and 4% elevated AST. Eleven pts (25%) achieved a CR, 9 with incomplete platelet recovery (20%), after a median time of 13 (10-16) weeks from treatment start. Five (11%) of these pts relapsed after achieving CR. Two pts (5%) received an allogeneic stem cell transplant while on study, one in CR and one primary refractory (after a blast count drop from 27 to 7%), and they are both still in CR and alive. Among 26 pts with FLT3 ITD and no D835 mutation, 9 (35%) achieved CR/CRp. Six of 18 (33%) pts not previously exposed to FLT3 inhibitors responded. There was no significant correlation of dose with response (24% with 50 mg bid vs 33% with 25 mg bid, p=0.63). After a median follow-up of 15 (3-72) weeks, 20 pts (64%) died, 3 (7%) while on study (2 died of sepsis, 1 of unknown causes with progressive disease). The median CRD was 16 (9-23) months. Factors significantly associated with a longer CRD were male sex (p=0.04), age older than 65 years (0.03) and use of 50 mg bid of midostaurin (p=0.02). Conclusions The combination of midostaurin and 5-AZA is safe and well tolerated. Its efficacy is most noticeable among pts with FLT3 mutations. A longer response duration is observed using midostaurin at 50 mg bid dose and in elderly male pts. Disclosures: Ravandi: CELGENE: Honoraria; NOVARTIS: Honoraria. Cortes:ARIAD: Consultancy, Research Funding; ASTELLAS: Research Funding; AMBIT: Research Funding; AROG: Research Funding; NOVARTIS: Research Funding.


Haematologica ◽  
2014 ◽  
Vol 100 (1) ◽  
pp. e7-e9 ◽  
Author(s):  
S. Assouline ◽  
B. Culjkovic-Kraljacic ◽  
J. Bergeron ◽  
S. Caplan ◽  
E. Cocolakis ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5133-5133 ◽  
Author(s):  
Daria Gaut ◽  
Aaron Burkenroad ◽  
Tuyen Duong ◽  
Jesse Feammelli ◽  
Joshua Sasine ◽  
...  

Introduction Venetoclax (VEN) is a selective BCL-2 inhibitor that has demonstrated activity against acute myeloid leukemia (AML) and has been shown to be effective when used in combination with hypomethylating agents (HMAs) or low-dose cytarabine (LDAC) for treatment-naïve, elderly AML patients unfit for intensive chemotherapy. Data on its use in the relapsed/refractory setting is limited. Methods A retrospective analysis was performed among 12 relapsed or refractory AML patients treated with VEN combination therapy at the University of California Los Angeles from 2018-2019. Seven patients received VEN in combination with azacitidine (75 mg/m2 x 7 days), 4 patients with decitabine (20 mg/m2 x 5 days), and 1 patient with low-dose cytarabine (20 mg/m2 x 10 days). Results The median patient age at time of VEN therapy was 58 years (range 41-79). Four patients (33.3%) had secondary AML. The majority (9 patients, 75.0%) had adverse cytogenetics. Three patients (25.0%) had received an allogeneic stem cell transplant prior to VEN therapy, and 5 patients (41.7%) had failed HMA therapy prior. Notable molecular mutations present were TP53 (4 patients, 33.3%), FLT3 (3 patients, 25.0%), and IDH2 (1 patient, 8.3%). Eight patients (66.7%) had grade 3 or greater neutropenia at time of VEN initiation, and 9 patients (75.0%) had grade 3 or greater thrombocytopenia. Four patients (33.3%) had a grade 3 or greater infection prior to VEN therapy. Dosing of VEN was by physician discretion with a median starting dose of 150 mg (range 100-800) and a median maintenance dose of 450 mg (range 200-800). The median number of cycles of VEN combination therapy was 2 (range 1-5). Seven patients (58.3%) had decreased VEN dosage due to concomitant azole for antifungal prophylaxis. Four patients (33.3%) were on an additional small molecular inhibitor while receiving VEN therapy (sorafenib in 3 patients, ruxolitinib in 1 patient). The majority (10 patients, 83.3%) had an interruption in VEN dosing for the following reasons: bone marrow functional delay (7 patients), inability to tolerate oral pills (4 patients), infection (3 patients), and bleeding (2 patients). The objective response rate (ORR) was 41.7% with 3 patients (25.0%) achieving complete remission with incomplete hematologic recovery (CRi) and 2 patients (16.7%) achieving partial remission (PR) (Table 1). Three patients (25.0%) experienced early death within 30 days due to the following: pneumonia (1 patient), multi-organ failure from infection and graft-versus-host disease (1 patient), and intracranial hemorrhage (1 patient). The median time to first and best response was 56 days (range 27-101) or after approximately 2 cycles of VEN combination therapy. During VEN therapy, all patients (100%) had grade 3 or greater neutropenia and thrombocytopenia, and 10 patients (83.3%) had grade 3 or greater anemia. The nadir of most cytopenias occurred during cycle 1. Six patients (50.0%) developed a grade 3 or greater infection following VEN therapy, and 2 patients (16.7%) developed a grade 3 or greater intracranial hemorrhage. The only other notable grade 3 or greater side effects noted during VEN therapy were dizziness (1 patient, 8.3%) and diarrhea (1 patient, 8.3%). After a median follow-up time of 3.14 months (range 1.22-13.48), 2 patients (16.7%) progressed, and the 1-year progression-free survival (PFS) rate was 71.11% (95% CI 43.40-100.00) (Figure 1). Eight out of 12 patients died as a result of infection (6 patients, 50.0%), disease progression (1 patient, 8.3%), and bleeding (1 patient, 8.3%). The median overall survival (OS) was 4.74 months (range 1.18-9.15), and the 1-year OS rate was 14.60% (95% CI 2.54-83.80) (Figure 2). VEN was discontinued in all patients because of no response (5 patients, 41.7%), adverse effects (4 patients, 33.3%), transition to donor lymphocyte infusion (1 patient, 8.3%), or transition to allogeneic stem cell transplant (2 patients, 16.7%). Conclusions We present our institutional experience with VEN combination therapy for the treatment of relapsed/refractory AML with a particularly high-risk patient cohort, predominantly characterized by adverse genetic features and grade 3 cytopenias prior to start of therapy. Overall, the response rate was modest, but not inferior to that with conventional salvage chemotherapy. Adverse events were primarily due to pre-existing bone marrow failure, likely exacerbated by treatment. Disclosures Schiller: Agios: Research Funding, Speakers Bureau; Amgen: Other, Research Funding; Astellas: Research Funding; Biomed Valley Discoveries: Research Funding; Bristol Myer Squibb: Research Funding; Celgene: Research Funding, Speakers Bureau; Constellation Pharmaceutical: Research Funding; Daiichi Sankyo: Research Funding; Eli Lilly and Company: Research Funding; FujiFilm: Research Funding; Genzyme: Research Funding; Gilead: Research Funding; Incyte: Research Funding; J&J: Research Funding; Jazz Pharmaceuticals: Honoraria, Research Funding; Karyopharm: Research Funding; Novartis: Research Funding; Onconova: Research Funding; Pfizer Pharmaceuticals: Equity Ownership, Research Funding; Sangamo Therapeutics: Research Funding. OffLabel Disclosure: Venetoclax is a BCL-2 inhibitor approved for use in combination with azacitidine or decitabine or low-dose cytarabine for the treatment of newly-diagnosed acute myeloid leukemia in adults who are age 75 years or older, or who have comorbidities that preclude use of intensive induction chemotherapy. It does not currently have an approved use for the treatment of acute myeloid leukemia in the relapsed/refractory setting.


Sign in / Sign up

Export Citation Format

Share Document