scholarly journals An early start of Coup-TFII promotes γ-globin gene expression in adult erythroid cells

Haematologica ◽  
2021 ◽  
Vol 106 (2) ◽  
pp. 335-336
Author(s):  
Stefania Bottardi ◽  
Eric Milot
Blood ◽  
2013 ◽  
Vol 121 (17) ◽  
pp. 3493-3501 ◽  
Author(s):  
Maria Amaya ◽  
Megha Desai ◽  
Merlin Nithya Gnanapragasam ◽  
Shou Zhen Wang ◽  
Sheng Zu Zhu ◽  
...  

Key Points Mi2β exerts a major part of its silencing effect on embryonic and fetal globin genes by positively regulating the BCL11A and KLF1 genes. Partial depletion of Mi2β induces increased γ-globin gene expression in primary human erythroid cells without impairing differentiation.


2000 ◽  
Vol 20 (15) ◽  
pp. 5581-5591 ◽  
Author(s):  
Daniel M. Cimbora ◽  
Dirk Schübeler ◽  
Andreas Reik ◽  
Joan Hamilton ◽  
Claire Francastel ◽  
...  

ABSTRACT DNA replication in the human β-globin locus is subject to long-distance regulation. In murine and human erythroid cells, the human locus replicates in early S phase from a bidirectional origin located near the β-globin gene. This Hispanic thalassemia deletion removes regulatory sequences located over 52 kb from the origin, resulting in replication of the locus from a different origin, a shift in replication timing to late S phase, adoption of a closed chromatin conformation, and silencing of globin gene expression in murine erythroid cells. The sequences deleted include nuclease-hypersensitive sites 2 to 5 (5′HS2-5) of the locus control region (LCR) plus an additional 27-kb upstream region. We tested a targeted deletion of 5′HS2-5 in the normal chromosomal context of the human β-globin locus to determine the role of these elements in replication origin choice and replication timing. We demonstrate that the 5′HS2-5-deleted locus initiates replication at the appropriate origin and with normal timing in murine erythroid cells, and therefore we conclude that 5′HS2-5 in the classically defined LCR do not control replication in the human β-globin locus. Recent studies also show that targeted deletion of 5′HS2-5 results in a locus that lacks globin gene expression yet retains an open chromatin conformation. Thus, the replication timing of the locus is closely correlated with nuclease sensitivity but not globin gene expression.


1991 ◽  
Vol 11 (9) ◽  
pp. 4690-4697 ◽  
Author(s):  
J G Glauber ◽  
N J Wandersee ◽  
J A Little ◽  
G D Ginder

A stable transfection assay was used to test the mechanism by which embryonic globin gene transcription is stimulated in adult erythroid cells exposed to butyric acid and its analogs. To test the appropriate expression and inducibility of chicken globin genes in murine erythroleukemia (MEL) cells, an adult chicken beta-globin gene construct was stably transfected. The chicken beta-globin gene was found to be coregulated with the endogenous adult mouse alpha-globin gene following induction of erythroid differentiation of the transfected MEL cells by incubation with either 2% dimethyl sulfoxide (DMSO) or 1 mM sodium butyrate (NaB). In contrast, a stably transfected embryonic chicken beta-type globin gene, rho, was downregulated during DMSO-induced MEL cell differentiation. However, incubation with NaB, which induces MEL cell differentiation, or alpha-amino butyrate, which does not induce differentiation of MEL cells, resulted in markedly increased levels of transcription from the stably transfected rho gene. Analysis of histone modification showed that induction of rho gene expression was not correlated with increased bulk histone acetylation. A region of 5'-flanking sequence extending from -569 to -725 bp upstream of the rho gene cap site was found to be required for both downregulation of rho gene expression during DMSO-induced differentiation and upregulation by treatment with NaB or alpha-amino butyrate. These data are support for a novel mechanism by which butyrate compounds can alter cellular gene expression through specific DNA sequences. The results reported here are also evidence that 5'-flanking sequences are involved in the suppression of embryonic globin gene expression in terminally differentiated adult erythroid cells.


2010 ◽  
Vol 286 (3) ◽  
pp. 2343-2353 ◽  
Author(s):  
Shalini A. Muralidhar ◽  
Valya Ramakrishnan ◽  
Inderdeep S. Kalra ◽  
Wei Li ◽  
Betty S. Pace

Blood ◽  
2015 ◽  
Vol 126 (16) ◽  
pp. 1930-1939 ◽  
Author(s):  
Aline Renneville ◽  
Peter Van Galen ◽  
Matthew C. Canver ◽  
Marie McConkey ◽  
John M. Krill-Burger ◽  
...  

Key Points EHMT1/2 inhibition increases human γ-globin and HbF expression, as well as mouse embryonic β-globin gene expression. EHMT1/2 inhibition decreases H3K9Me2 and increases H3K9Ac at the γ-globin gene locus in adult human erythroid cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1581-1581
Author(s):  
Rodwell Mabaera ◽  
Christine Richardson ◽  
Sarah Conine ◽  
Christopher H. Lowrey

Abstract 5-Azacytidine (5-Aza) was demonstrated to be a potent inducer of human fetal globin gene expression more than 20 years ago. More recently, 5-Aza-2-deoxycytidine has been shown to have similar properties. Since the 1980’s there have been two predominant hypotheses to explain the action of these agents. The first is based on the observation that these, and several other active inducing agents, are cytotoxic to differentiating erythroid cells and that drug treatment alters the kinetics of erythroid differentiation. This has been proposed to result in prolonged expression of the γ-globin genes which are normally expressed only early in differentiation. The second is based on the observation that both agents are DNA methyltransferase inhibitors and are presumed to cause demethylation of cellular DNA including the γ-globin gene promoters leading to activation of the genes. These two models lead to specific predictions that we have evaluated using an in vitro erythroid differentiation system. In this system, human adult CD34+ cells are cultured in SCF, Flt3 ligand and IL-3 for 7 days and then switched to Epo for 14 days. This results in an exponential expansion of erythroid cells. As has been described for normal human differentiation, these cells express small amounts of γ-globin mRNA early in differentiation followed by a much larger amount of β-globin mRNA. HPLC at the end of the culture period shows 99% HbA and 1% HbF. Treatment of cultures on a daily basis with 5-Aza starting on day 10 results in dose dependent increases in γ-globin mRNA, Gγ- and Aγ-chain production and HbF. The cytotoxicity model predicts that γ-globin expression will be prolonged to later in differentiation - and this is seen. However, a daily 5-Aza dose of 300 nM, which produces ~80% of the maximal response in γ-globin mRNA and HbF, has no effect on cell growth or differentiation kinetics. This argues against the toxicity model. We next examined the effect of 5-Aza on γ-globin promoter methylation using the bisulfite method. We studied CpGs at −344, −252, −162, −53, −50, +6, +19 and +50 relative to the start site. For untreated controls, all of the sites are nearly 100% methylated at day 1. By day 3, the upstream sites become ~50% methylated except the −53 CpG which was <20%. This pattern persisted at day 10. By day 14 the promoters had become largely remethylated. For cells treated with 5-Aza starting on day 10, there was no change in the levels of methylation seen on days 1,3 and 10, but at day 14 the low levels of upstream methylation persisted - just as γ-globin expression does. However, in both treated and untreated cells, down-stream CpG sites were highly methylated at all time points. This suggests that γ promoter demethylation may be due to a local and not a generalized effect of 5-Aza on cellular DNA methylation. We also made two unexpected observations. At a 300nM dose of 5-Aza, γ-globin mRNA is ~doubled while β-globin mRNA levels are ~halved - indicating that 5-Aza not only induces γ-globin expression also suppresses β-globin. Also despite only a doubling in γ-globin mRNA, there was an ~50-fold increase in HbF, from ~1% to more than 50%, while total per cell Hb levels were unchanged. Neither of these results are easily explained by current models of γ-globin gene induction. Our results raise the possibility that mechanisms beyond cytotoxicity and generalized DNA demethylation may be responsible for pharmacologic induction of γ-globin mRNA and HbF.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 487-487 ◽  
Author(s):  
Vijay G Sankaran ◽  
Tobias F. Menne ◽  
Thomas E. Akie ◽  
Guillaume Lettre ◽  
Joel N. Hirschhorn ◽  
...  

Abstract Numerous molecular approaches have been taken to elucidate the regulation of the human β-like globin genes, and particularly the “fetal” (γ- to β-) globin switch, given the role of fetal hemoglobin (HbF) levels on disease severity in the β-hemoglobin disorders. Despite these efforts, no developmental stage-specific nuclear regulators of HbF expression have been identified and validated. Recent genome-wide single nucleotide polymorphism (SNP) association studies by us and others have revealed novel loci that are significantly associated with HbF levels in normal, sickle cell, and thalassemia populations. One variant, lying within intron 2 of the chromosome 2 gene BCL11A, accounts for &gt;10% of the variation in HbF levels. We have now tested the hypothesis that BCL11A, a zinc-finger transcription factor, serves as a stage-specific regulator of HbF expression, rather than merely a genetic marker of HbF status. We found that BCL11A is expressed as two major isoforms (termed XL and L) in human erythroid progenitors. The level of BCL11A expression is inversely correlated with the expression of the HbF gene, γ-globin, in human erythroid cell types representative of different developmental stages. Expression of BCL11A is negligible in embryonic, and high in adult, erythroid cells. Correlation of SNP genotypes with levels of BCL11A RNA in cells derived from individuals of known genotypes indicates that the “high HbF” genotype is associated with reduced BCL11A expression. To better characterize its potential role in erythropoiesis and globin gene regulation, we identified interacting protein partners of BCL11A in erythroid cells through affinity purification and protein microsequencing. We found that the BCL11A protein exists in complexes with the nucleosome remodeling and histone deacetylase (NuRD) corepressor complex, as well as the erythroid transcription factors GATA-1 and FOG-1. Taken together, the genetic, developmental, and biochemical data are most consistent with a model in which BCL11A functions as a repressor of γ-globin gene expression. To directly test this possibility, we modulated expression of BCL11A in primary human erythroid precursors expanded from adult CD34+ progenitors. Transient or persistent knockdown of BCL11A accomplished by siRNA or lentiviral shRNA delivery, respectively, led to robust induction of γ-globin gene expression. Importantly, down-regulation of BCL11A expression did not alter the differentiation state or global transcriptional profile of the cells, suggesting an effect on a limited number of targets, including the γ-globin gene. In summary, these studies establish BCL11A as a potent regulator of human globin switching. As an adult-stage repressor, BCL11A represents a primary target for therapy aimed at reactivating HbF expression in patients with β-hemoglobin disorders. Our studies illustrate the power of an integrative approach to reveal the functional connection between a common genetic variant and a trait that serves as a prominent modifier of disease severity.


2015 ◽  
Vol 54 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Valentina Lulli ◽  
Paolo Romania ◽  
Ornella Morsilli ◽  
Ramona Ilari ◽  
Marco Gabbianelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document