scholarly journals Role of different parameters and mathematical models for metal ions adsorption from industrial waste water

2020 ◽  
Vol 10 (3) ◽  
pp. 5516-5523

Manuscript discussed the role of different parameters for the metal ions removal from industrial waste water. The metal ions removal from waste water is essential to decrease the diseases and environmental hazards caused by heavy metal ions. The different parameters of adsorption including the effect of contact time, dose, pH, temperature, kinetics and Brunauer-Emmett-Teller analysis is discussed. This manuscript focuses on biosorption of metal ions, competitive adsorption of metal ions and ligand based adsorption of metal ions. This manuscript also focuses on the commercially available adsorbent used in the removal of metal ions efficiently including polymeric adsorbent and activated carbon.

2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


2013 ◽  
Vol 22 ◽  
pp. 619-625 ◽  
Author(s):  
GARIMA PRAJAPAT ◽  
PRAVEEN PUROHIT

A study on the adsorption of copper (II) ions from the aqueous solution on waste wool had been carried out to analyze the adsorption capacity of waste wool, thereby aiming towards mitigation of metal ion pollution in industrial waste water. The effect of varying concentration of copper ions and varying time period, was studied on fixed weight of waste wool. The initial and final concentration of copper ions was measured by conductometric and spectrophotometric methods. Adsorption data were modeled with the langmuir and freundlich adsorption isotherms. The isotherm and first order equation were found to be applicable. Removal of metal ions using industrial waste wool is found to be favourable. Thus the work can be extended to study various physico-chemical parameters for removal of copper (II) ions from industrial effluents using waste wool. A later work can be involved where the waste wool adsorption parameter can be further utilized for composite ceramic products.


2014 ◽  
Vol 625 ◽  
pp. 749-752 ◽  
Author(s):  
Azry Borhan ◽  
Kok Hoong Phoon ◽  
Mohd Faisal Taha

The objective of this research is to study the potential of using banana peel as a biosorbent in removing heavy metal ions (Cu2+, Zn2+ and Pb2+) and oil/grease particles from industrial waste water. The study emphasizes on the parameters involved in the preparation phase of the banana peel adsorbent, such as particle sizes, activating agent, impregnation ratio, carbonization temperature and duration. Based on the findings, it shows that the adsorption capacity is correlated to the total surface area (SBET), pore volume (VT) and average pore diameter (D) of the materials. Sample A20 yields the highest percentage removal for all tested waste water pollutants, suggesting that banana peel based activated carbon can be used effectively as biosorption material.


Sign in / Sign up

Export Citation Format

Share Document