scholarly journals Removal of Zinc Metal Ions from Electroplating Industrial Waste Water by Using Bio-Sorbent

Author(s):  
Mr. Vivek S. Damal ◽  
Mrs. V. U. Khanapure
2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


2020 ◽  
Vol 10 (3) ◽  
pp. 5516-5523

Manuscript discussed the role of different parameters for the metal ions removal from industrial waste water. The metal ions removal from waste water is essential to decrease the diseases and environmental hazards caused by heavy metal ions. The different parameters of adsorption including the effect of contact time, dose, pH, temperature, kinetics and Brunauer-Emmett-Teller analysis is discussed. This manuscript focuses on biosorption of metal ions, competitive adsorption of metal ions and ligand based adsorption of metal ions. This manuscript also focuses on the commercially available adsorbent used in the removal of metal ions efficiently including polymeric adsorbent and activated carbon.


2014 ◽  
Vol 625 ◽  
pp. 749-752 ◽  
Author(s):  
Azry Borhan ◽  
Kok Hoong Phoon ◽  
Mohd Faisal Taha

The objective of this research is to study the potential of using banana peel as a biosorbent in removing heavy metal ions (Cu2+, Zn2+ and Pb2+) and oil/grease particles from industrial waste water. The study emphasizes on the parameters involved in the preparation phase of the banana peel adsorbent, such as particle sizes, activating agent, impregnation ratio, carbonization temperature and duration. Based on the findings, it shows that the adsorption capacity is correlated to the total surface area (SBET), pore volume (VT) and average pore diameter (D) of the materials. Sample A20 yields the highest percentage removal for all tested waste water pollutants, suggesting that banana peel based activated carbon can be used effectively as biosorption material.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Taty Hernaningsih

Waste water treatment by industry usually uses chemicals that may lead to additional environmental pollution load. On the other hand, water demand increases and environmental regulations regarding waste water disposal requirements that apply more stringent. It is necessary for waste treatment technique that accommodate this requirement. Electrocoagulation process is a technique of wastewater treatment that has been chosen because the technique is environmentally friendly. This paper will review some of the research or application electrocoagulation process which is conducted on industrial waste water. Types of industrial waste water that is to be reviewed include: industries batik, sarongs, textiles, palm oil, slaughterhouses, food, leather tanning, laundry, pulp and paper. Overview reviewed in this research include the waste water treatment process in several processing variations such as: change in time, electricity and kind of electrodes. The results of the research with electrocoagulation process in the industry are the removal efficiency of TSS, COD, BOD5, Chrome, phosphate, surfactants, color turbidity influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. The results of the study with electrocoagulation process in the industry is the removal efficiency of TSS, COD, BOD5, chromium, phosphate, surfactant, turbidity color that are influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. It is hoped the information presented in this article can be a reference for similar research for the improvement of research on the process ektrokoagulasi.Key words: elektrocoagulation, removal eficiency, environmental friendly


Sign in / Sign up

Export Citation Format

Share Document