scholarly journals On the perfect diameter condition to optimize the antibiotic nanoencapsulation: case of gramicidin

2019 ◽  
Vol 8 (3) ◽  
pp. 654-660 ◽  

In the present work, we propose to investigate the ionic transport mechanisms in a new optimized biomimetic system. Our studies performed using classical molecular dynamics simulations show that it was possible to optimize the geometry of a hydrophobic nanopore in order to stabilize a small antibiotic by confinement. The analyses of the antibiotic structure gathered with the free energy profiles of ion diffusion through the channel of the antibiotic demonstrate the stability and the functional encapsulation of the drug. It opens a new way to build biomimetic nanochannel or nanovector for drug delivery.

2018 ◽  
Vol 47 (5) ◽  
pp. 1604-1613 ◽  
Author(s):  
Bo Li ◽  
Chad Priest ◽  
De-en Jiang

Classical molecular dynamics simulations coupled with umbrella sampling reveal the atomistic processes and free-energy profiles of the displacement of carbonate groups in the Ca2UO2(CO3)3 complex by amidoxime-based ligands in a 0.5 M NaCl solution.


2019 ◽  
Author(s):  
Irfan Alibay ◽  
Richard Bryce

<p>The conformational flexibility of the glycosaminoglycans (GAGs) are known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucoronate and iduronate. These calculations indicate that in some cases, an excess of 15 microseconds are required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for eleven monosaccharides found in GAGs; this includes to our knowledge the first simulation study of sulfation effects on GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the <sup>1</sup>C<sub>4</sub> ring conformation; this observation may have implications for understanding the structural basis of the biological function of GalNAc-containing glycosaminoglycans such as dermatan sulfate.</p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Uddhav K. Shigdel ◽  
Victor Ovchinnikov ◽  
Seung-Joo Lee ◽  
Jenny A. Shih ◽  
Martin Karplus ◽  
...  

Abstract Efficient search for DNA damage embedded in vast expanses of the DNA genome presents one of the greatest challenges to DNA repair enzymes. We report here crystal structures of human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, that interact with the DNA containing the damaged base oxoG and the normal base G while they are nested in the DNA helical stack. The structures reveal that hOGG1 engages the DNA using different protein-DNA contacts from those observed in the previously determined lesion recognition complex and other hOGG1-DNA complexes. By applying molecular dynamics simulations, we have determined the pathways taken by the lesion and normal bases when extruded from the DNA helix and their associated free energy profiles. These results reveal how the human oxoG DNA glycosylase hOGG1 locates the lesions inside the DNA helix and facilitates their extrusion for repair.


2019 ◽  
Author(s):  
Irfan Alibay ◽  
Richard Bryce

<p>The conformational flexibility of the glycosaminoglycans (GAGs) are known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucoronate and iduronate. These calculations indicate that in some cases, an excess of 15 microseconds are required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for eleven monosaccharides found in GAGs; this includes to our knowledge the first simulation study of sulfation effects on GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the <sup>1</sup>C<sub>4</sub> ring conformation; this observation may have implications for understanding the structural basis of the biological function of GalNAc-containing glycosaminoglycans such as dermatan sulfate.</p>


2021 ◽  
Vol 11 (9) ◽  
pp. 4052
Author(s):  
Alice Romeo ◽  
Mattia Falconi ◽  
Alessandro Desideri ◽  
Federico Iacovelli

The pH-responsive behavior of six triple-helix DNA nanoswitches, differing in the number of protonation centers (two or four) and in the length of the linker (5, 15 or 25 bases), connecting the double-helical region to the single-strand triplex-forming region, was characterized at the atomistic level through Adaptively Biased Molecular Dynamics simulations. The reconstruction of the free energy profiles of triplex-forming oligonucleotide unbinding from the double helix identified a different minimum energy path for the three diprotic nanoswitches, depending on the length of the connecting linker and leading to a different per-base unbinding profile. The same analyses carried out on the tetraprotic switches indicated that, in the presence of four protonation centers, the unbinding process occurs independently of the linker length. The simulation data provide an atomistic explanation for previously published experimental results showing, only in the diprotic switch, a two unit increase in the pKa switching mechanism decreasing the linker length from 25 to 5 bases, endorsing the validity of computational methods for the design and refinement of functional DNA nanodevices.


Sign in / Sign up

Export Citation Format

Share Document