scholarly journals Ring Puckering Landscapes of Glycosaminoglycan-Related Monosaccharides from Molecular Dynamics Simulations

Author(s):  
Irfan Alibay ◽  
Richard Bryce

<p>The conformational flexibility of the glycosaminoglycans (GAGs) are known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucoronate and iduronate. These calculations indicate that in some cases, an excess of 15 microseconds are required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for eleven monosaccharides found in GAGs; this includes to our knowledge the first simulation study of sulfation effects on GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the <sup>1</sup>C<sub>4</sub> ring conformation; this observation may have implications for understanding the structural basis of the biological function of GalNAc-containing glycosaminoglycans such as dermatan sulfate.</p>

2019 ◽  
Author(s):  
Irfan Alibay ◽  
Richard Bryce

<p>The conformational flexibility of the glycosaminoglycans (GAGs) are known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucoronate and iduronate. These calculations indicate that in some cases, an excess of 15 microseconds are required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for eleven monosaccharides found in GAGs; this includes to our knowledge the first simulation study of sulfation effects on GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the <sup>1</sup>C<sub>4</sub> ring conformation; this observation may have implications for understanding the structural basis of the biological function of GalNAc-containing glycosaminoglycans such as dermatan sulfate.</p>


2018 ◽  
Vol 47 (5) ◽  
pp. 1604-1613 ◽  
Author(s):  
Bo Li ◽  
Chad Priest ◽  
De-en Jiang

Classical molecular dynamics simulations coupled with umbrella sampling reveal the atomistic processes and free-energy profiles of the displacement of carbonate groups in the Ca2UO2(CO3)3 complex by amidoxime-based ligands in a 0.5 M NaCl solution.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Uddhav K. Shigdel ◽  
Victor Ovchinnikov ◽  
Seung-Joo Lee ◽  
Jenny A. Shih ◽  
Martin Karplus ◽  
...  

Abstract Efficient search for DNA damage embedded in vast expanses of the DNA genome presents one of the greatest challenges to DNA repair enzymes. We report here crystal structures of human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, that interact with the DNA containing the damaged base oxoG and the normal base G while they are nested in the DNA helical stack. The structures reveal that hOGG1 engages the DNA using different protein-DNA contacts from those observed in the previously determined lesion recognition complex and other hOGG1-DNA complexes. By applying molecular dynamics simulations, we have determined the pathways taken by the lesion and normal bases when extruded from the DNA helix and their associated free energy profiles. These results reveal how the human oxoG DNA glycosylase hOGG1 locates the lesions inside the DNA helix and facilitates their extrusion for repair.


2019 ◽  
Vol 8 (3) ◽  
pp. 654-660 ◽  

In the present work, we propose to investigate the ionic transport mechanisms in a new optimized biomimetic system. Our studies performed using classical molecular dynamics simulations show that it was possible to optimize the geometry of a hydrophobic nanopore in order to stabilize a small antibiotic by confinement. The analyses of the antibiotic structure gathered with the free energy profiles of ion diffusion through the channel of the antibiotic demonstrate the stability and the functional encapsulation of the drug. It opens a new way to build biomimetic nanochannel or nanovector for drug delivery.


Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


Sign in / Sign up

Export Citation Format

Share Document