An analytical expression for the seismic passive earth pressure from the c-Φ soil backfills on rigid retaining walls with wall friction and adhesion

2012 ◽  
Vol 6 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Sanjay Shukla
2011 ◽  
Vol 48 (5) ◽  
pp. 767-780 ◽  
Author(s):  
Armando N. Antão ◽  
Teresa G. Santana ◽  
Mário Vicente da Silva ◽  
Nuno M. da Costa Guerra

A three-dimensional (3D) numerical implementation of the limit analysis upper-bound theorem is used to determine passive horizontal earth-pressure coefficients. An extension technique allowing determination of the 3D passive earth pressures for any width-to-height ratios greater than 7 is presented. The horizontal passive earth-pressure coefficients are presented and compared with solutions published previously. Results of the ratio between the 3D and two-dimensional horizontal passive earth-pressure coefficients are shown and found to be almost independent of the soil-to-wall friction ratio. A simple equation is proposed for calculating this passive earth-pressure ratio.


2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


Retaining walls are structures used not only to retain earth but also water and other materials such as coal, ore, etc. where conditions do not permit the mass to assume its natural slope. In this chapter, after considering the types of retaining wall, earth pressure theories are developed in estimating the lateral pressure exerted by the soil on a retaining structure for at-rest, active, and passive cases. The effect of sloping backfill, wall friction, surcharge load, point loads, line loads, and strip loads are analyzed. Karl Culmann's graphical method can be used for determining both active and passive earth pressures. The analysis of braced excavations, sheet piles, and anchored sheet pile walls are considered and practical considerations in the design of retaining walls are treated. They include saturated backfill, wall friction, stability both external and internal, bearing capacity, and proportioning the dimensions of the retaining wall. Finally, a brief treatment of earth pressure on underground structures is included.


Retaining walls are widely used as permanent structures for retaining soils at different levels.Type of the wall depends on the soil pressure, such as active or passive earth pressure and earth pressure at rest and drainage conditions. Types of walls generally used are gravity walls, RCC walls, counterfort walls and buttress retaining walls. Retaining walls behavior depends on the wall height and retention heights of the soil at its backfill. Retaining walls are used with tying with more than one wall at perpendicular joints to retain liquids, water storage and materials storages such as dyke walls and tanks. Retaining walls excessively used in culverts and as well as in the bridges for construction of abutment wing walls supposed to resist soil pressures laterally applied perpendicular to the axis of the walls.Based on the present scenario used in retaining structures within the civil industries there requirements of height of walls are being increased due to lake of land and cost of sub structures being incurred in the project work, higher height of walls develops huge bending moment at the base because of the cantilever action of the walls, thus resulting in higher sections at the base which deploys into a uneconomical zone so different wall systems are required in different arrangements so as to transfer the loads with limited sections. In the present study retaining walls of height 6m, 9m and 12m are considered for study and the length of the walls considered as 30m and the material properties considered are M20 and Fe415 steel bars and the supports considered to be fixed at the base


Sign in / Sign up

Export Citation Format

Share Document