Change of permafrost temperature regime in the area of the Ardalinskoye field

Author(s):  
O.V. Kraineva ◽  
◽  
M.G. Gubaidullin ◽  
A.V. Kalashnikov ◽  
V.P. Abakumov ◽  
...  
2018 ◽  
Vol 18 (2) ◽  
pp. 53-61
Author(s):  
MV Pashilov

Ensuring stability of subgrade soil under engineering structures is a critical task at oil field development projects in the Arctic. It is largely determined by the state of the permafrost influenced by natural and man-induced changes to the temperature regime. The issue of permafrost stability forecasting is still underexplored, this entailing a number of challenges for construction and trouble-free operation of facilities in the Far North. The Ardalin Oil and Gas Field (AOGF) is the only project in the Nenets Autonomous District (NAD) where results of extensive temperature measurements carried out in special thermometric wells have been accumulated over a lengthy period of over 20 years. This article contains the findings of thermometric monitoring of the top layer of soil with an average depth interval of 20 metres. Changes in the permafrost temperature regime, in both the presence and absence of sand (soil) filling, over the study period are described in the article. Natural physical and climatic disturbances that rule out the possibility of maintaining a continuous permafrost temperature are identified. In addition, the key sources of man-induced impact on the top layer of permafrost at the location of the AOGF production infrastructure facilities are analysed. This analysis resulted in recommendations that might be of help during design and construction of engineering works in the European North of Russia and serve to minimise thermal impact on frozen ground. Preserving the permafrost layer in its original natural state will help ensure stability of the subgrade of buildings and structures, thereby reducing the chances of any accidents.


2018 ◽  
Vol 18 (2) ◽  
pp. 53-61
Author(s):  
Maksim Pashilov

Ensuring stability of subgrade soil under engineering structures is a critical task at oil field development projects in the Arctic. It is largely determined by the state of the permafrost influenced by natural and man-induced changes to the temperature regime. The issue of permafrost stability forecasting is still underexplored, this entailing a number of challenges for construction and trouble-free operation of facilities in the Far North. The Ardalin Oil and Gas Field (AOGF) is the only project in the Nenets Autonomous District (NAD) where results of extensive temperature measurements carried out in special thermometric wells have been accumulated over a lengthy period of over 20 years. This article contains the findings of thermometric monitoring of the top layer of soil with an average depth interval of 20 metres. Changes in the permafrost temperature regime, in both the presence and absence of sand (soil) filling, over the study period are described in the article. Natural physical and climatic disturbances that rule out the possibility of maintaining a continuous permafrost temperature are identified. In addition, the key sources of man-induced impact on the top layer of permafrost at the location of the AOGF production infrastructure facilities are analysed. This analysis resulted in recommendations that might be of help during design and construction of engineering works in the European North of Russia and serve to minimise thermal impact on frozen ground. Preserving the permafrost layer in its original natural state will help ensure stability of the subgrade of buildings and structures, thereby reducing the chances of any accidents.


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


2015 ◽  
pp. 56-61
Author(s):  
A. V. Kustyshev ◽  
A. V. Krasovskii ◽  
E. S. Zimin ◽  
D. A. Tatarikov

An algorithm has been developed, and a method of calculation of wellhead temperature in gas wells has been realized based on the geologo-technological model. The developed method enables to calculate the forecast process parameters taking into consideration the temperature regime of gas wells. The method was tested using the above mentioned model of the Cenomanian deposit of one of West Siberia fields. The results of these calculations have been later taken into account in designing the deposit development.


Sign in / Sign up

Export Citation Format

Share Document