global climatic change
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Tatianne P. F. Abreu‐Jardim ◽  
Lucas Jardim ◽  
Liliana Ballesteros‐Mejia ◽  
Natan M. Maciel ◽  
Rosane G. Collevatti

2021 ◽  
Author(s):  
Kate Pollard ◽  
Rob Tanner

Abstract I. glandulifera is a highly invasive annual species which has spread rapidly in many parts of Europe and North America after its introduction as an ornamental. The spread is likely to continue to more northerly or high montane areas as a result of global climatic change. Due to its ability to form dense stands and its conspicuous appearance it has been blamed for negative biodiversity effects. Even though these effects are less severe than often thought, further spread is undesirable and should not be facilitated by further use, in particular in natural areas. Control is advisable in certain situations, e.g. nature reserves and conservation sensitive areas, but eradication from larger parts of its invasive range is not feasible due to the need to control the plant on a catchment scale, which is often impossible due to the sheer scale of occurrence and division of land ownership.


2019 ◽  
Vol 139 (1-2) ◽  
pp. 45-55
Author(s):  
Yongli Wang ◽  
Jinming Feng ◽  
Li Dan ◽  
Shan Lin ◽  
Jing Tian

2019 ◽  
Vol 6 (4) ◽  
pp. 182111 ◽  
Author(s):  
Lewis A. Jones ◽  
Philip D. Mannion ◽  
Alexander Farnsworth ◽  
Paul J. Valdes ◽  
Sarah-Jane Kelland ◽  
...  

Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.


Sign in / Sign up

Export Citation Format

Share Document