scholarly journals Callus induction and regeneration of Alkanna orientalis var. Orientalis and A. sieheana

2019 ◽  
Vol 48 (3) ◽  
pp. 633-640 ◽  
Author(s):  
Cenney Yaman ◽  
Serkan Uranbey ◽  
Hussein Abdullah Ahmed ◽  
Sabahattin Özcan ◽  
Osman Tugay ◽  
...  

Callus induction and proliferation of Alkanna orientalis var. orientalis and Alkanna sieheana containing valuable alkannin/shikonin (A/S) derivates were investigated using leaf base and stem segment explants. Stem segments and cotyledonary leaf base of both species were cultured on Murashige and Skoog medium fortified with different concentrations of BAP, Kn, NAA, IAA and IBA for callus induction and shoot regeneration. High frequency reproducible, prolific and compact calli formation was obtained from the stem segments of both species in all media tested. The frequency variations of callus induction and shoot regeneration were discussed in terms of different species, plant growth regulators and explant resources. A. orientalis and A. sieheana may be considered to be alternative plants for the A/S production in vitro.

2012 ◽  
Vol 40 (1) ◽  
pp. 107 ◽  
Author(s):  
Cuiqin YANG ◽  
Yaoguo QIN ◽  
Xin SUN ◽  
Shu YUAN ◽  
Honghui LIN

An efficient protocol was established for Sedum spectabile Boreau propagation. Various leaf parts were used as explants to regenerate plantlets, the stem segments of which were cultured for shoot proliferation and plantlet multiplication. The results showed that the leaf base was the optimal explant, as compared to both the middle and the top of leaves, for shoot formation. The highest shoot induction of 88.9% was observed on MS medium supplemented with 0.6 mg/l TDZ and 0.1 mg/l NAA. Hyperhydric leaves obtained in primary culture developed first into abnormal somatic embryos 10 days after subculture, and then into hyperhydric plantlets after an additional 10 days. The hyperhydric plantlets reversed to normal plantlets when plant growth regulators were removed from culture medium. Further, stem segments from reversed plantlets were used for shoot regeneration and root induction. Optimal shoot regeneration was obtained in MS medium containing 0.6 mg/l TDZ with 0.1 mg/l NAA. Root induction and root mean number were all higher on auxin-free medium than on medium containing auxins.


1970 ◽  
Vol 35 (2) ◽  
pp. 331-341 ◽  
Author(s):  
MA Sayem ◽  
M Maniruzzaman ◽  
SS Siddique ◽  
M Al-Amin

The experiment was conducted to investigate the performance of three different genotypes (BARI Sarisha-6, BARI Sarisha-8, and BARI Sarisha-11) in two different media viz., MS and B5 with different concentrations of phytohormone (2, 4-D) for callus induction from uninucleate stage anthers of Brassica and subsequent plant regeneration in MS media with different concentrations of phytohormone (BAP and NAA). Among the genotypes, BARI Sarisha-8 showed the best performance for all the parameters of callus induction. The performance of BARI Sarisha-6 was poor compared to others. Maximum rate of callus induction (%) was observed in MS + 0.5 mg/L 2, 4-D followed by B5 + 0.5 mg/L 2,4-D. The media combination MS + 1.0 mg/L BAP 0.3 mg/L 2,4-D showed the best performance for maintenance of calli. Significant variations were observed among the genotypes and media composition for shoot regeneration. Among the genotypes, BARI Sarisha-8 showed the best performance for shoot regeneration followed by BARJ Sarisha-l1. The genotype BARI Sarisha-8 produced higher percent of shoots/calli and required minimum days for shoot initiation. Higher percent calli without shoot were produced by the genotype BARI Sarisha-6. The media combination MS + 2.0 mg/L BAP + 0.5 mg/L NAA showed the best performance for shoot regeneration and required maximum days for shoot initiation. Keywords: Regeneration; BARI Sarisha-6; BARI Sarisha-8; BARI Sarisha-11; anther culture; phytohormone  DOI: 10.3329/bjar.v35i2.5896Bangladesh J. Agril. Res. 35(2) : 331-341, June 2010


2011 ◽  
Vol 63 (1) ◽  
pp. 209-215 ◽  
Author(s):  
S. Uranbey

A high frequency of bulblet regeneration was achieved for the endemic and endangered ornamental plant Muscari azureum using immature embryos. Immature embryos of M. azureum were cultured on a callus induction medium consisting of N6 mineral salts and vitamins, 400 gL-1 casein + 40 gL-1 sucrose + 2 mgL-1 L-proline, 2 mgL-1 2,4-D and 2 gL-1 Gelrite. Then the embryogenic callus clusters were transferred to a bulblet induction medium consisting of MS mineral salts and vitamins containing different concentrations and combinations of BAP, KIN, TDZ, Zeatin, IAA, NAA, 30 gL-1 sucrose and 7 gL-1 agar. Prolific bulblet multiplication (over 13 bulblets/embryo) was achieved from immature embryos after 5-6 months of culture initiation. Well-developed bulblets were excised and individually rooted on ? strength MS medium supplemented with 1 mgL-1 IBA, 0.5 gL-1activated charcoal, 20 gL-1sucrose and 6 gL-1agar and acclimatized. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150608072E">10.2298/ABS150608072E</a><u></b></font>


1970 ◽  
Vol 8 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M Hoque ◽  
KM Nasiruddin ◽  
GKMN Haque ◽  
GC Biswas

The experiment was conducted during May to December 2008 in the Biotechnology Laboratory of Bangladesh Agricultural University, Mymensingh to observe the callus induction, regeneration potentiality and to establish a suitable in vitro plantlet regeneration protocol of Corchorus olitorius. MS medium supplemented with different phytohormone concentrations and combinations were used to observe the callus induction, shoot regeneration and root formation ability of the cotyledon with attached petiole derived explant of three genotypes viz. O-9897, O-72 and OM-1. The highest callus induction (92.85%) was observed in O-9897 followed by O-72 (82.14%) in the MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA. Genotype O-9897 in MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA produced the highest percentage of shoot regenerants (83.33%) followed by O-72 (75.00%) in the media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA. The root formation from regenerants was the best on halfstrength of MS media supplemented with 0.6 mg/L IBA in genotype O-9897 (45.00%). The in vitro regenerated plantlets from the genotypes O-9897 could be established in the field. Therefore, the genotypes O-9897 of C. olitorius in MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA could be used for callus induction and shoot regeneration. Keywords: Regeneration; Phytohormone; Corchorus olitorius DOI: 10.3329/jbau.v8i1.6390J. Bangladesh Agril. Univ. 8(1): 1-6, 2010


2020 ◽  
Vol 30 (1) ◽  
pp. 131-141
Author(s):  
Hundessa Fufa ◽  
Jiregna Daksa

The present study was undertaken to establish a protocol for in vitro callusing of three Jatropha accessions, namely Metema, Adami Tulu and Shewa Robit from leaf explants. The medium supplemented with combination of 4.44 μM BAP and 4.52 μM 2,4-D resulted in maximum percentage of callus (100%) formed for all accessions. The maximum shoot regeneration (66.67%) from callus with 10.13 number of shoot was obtained from Shewa Robit in MS medum fortified with TDZ (2.27 μM ) and IBA (0.49 μM ). The presence of TDZ in the shoot regeneration medium has greater influence on the induction of adventitious shoot buds, whereas MS supplemented with BAP alone and combination with IBA did not induce shoot regeneration from callus culture. The results obtained in the present study would facilitate the high callus induction and regeneration responses in Jatropha for its improvement using biotechnological tools. Plant Tissue Cult. & Biotech. 30(1): 131-141, 2020 (June)


Author(s):  
Padmavathi A.V. Thangella ◽  
B. Fakrudin

An efficient in vitro protocol was developed for callus induction, high frequency plant regeneration through callus cultures derived from cotyledonary leaf and epicotyl explants, rooting of shoots derived from callus and establishment onto the natural conditions in two cultivars of pigeon pea; ICPL 87119 and ICPL 8863. Cotyledonary leaf and epicotyl explants were tested for callus induction across 48 different combinations and concentrations of auxins and cytokinins in MS medium, wherein, higher doses of auxins (15 mg/1 NAA) in combination with lower doses of cytokinins (0.5 mg/l kinetin) induced regenerable callus from leaf explants while lower doses of auxins (0.2 mg/1 NAA) in combination with higher doses of cytokinins (8 mg/1 kinetin) induced regenerable callus from epicotyl explants in both the genotypes. Plantlet regeneration from leaf and epicotyl derived callus was optimized at 0.05 mg/l TDZ in both genotypes. Rooting was optimized on ½ MS + 0.5 mg/1 IBA media in both genotypes. Well-rooted plants were acclimatized and established successfully into natural conditions in potting mixture-containing soil: FYM in 1:1 ratio resulting in 48.01 per cent survivability. Regenerated plants were uniform morphologically with normal leaf shape and growth. This protocol finds its significance in rapid multiplication of transgenic plants.


1970 ◽  
Vol 16 (1) ◽  
pp. 53-61 ◽  
Author(s):  
RH Sarker ◽  
Sabina Yesmin ◽  
MI Hoque

Among the in vitro derived different explants such as cotyledonary leaf, hypocotyl, shoot tip and root of two local varieties, namely Singhnath and Kazla (BARI Begun-4) of eggplant (Solanum melongena L.) cotyledonary leaf was found to be the best for multiple shoot regeneration. High frequency direct organo-genesis of shoots was achieved from cotyledonary leaf in MS supplemented with 1.0 mg/l BAP and 1.0 mg/l Kn. Anatomical studies using freezing microtome supported the formation of shoots through organogenesis. Proliferation and elongation of such shoots were obtained in hormone free MS. Moreover, the regenerated shoots produced healthy roots when they were cultured on MS without hormonal supplements. Following the formation of roots the in vitro raised plantlets were successfully established in soil. Viable seeds were obtained from the in vitro raised mature plants.Key words: Regeneration, Multiple shoot, EggplantDOI = 10.3329/ptcb.v16i1.1106Plant Tissue Cult. & Biotech. 16(1): 53-61, 2006 (June)


2021 ◽  
Vol 12 ◽  
Author(s):  
Denis Okello ◽  
Sungyu Yang ◽  
Richard Komakech ◽  
Yuseong Chung ◽  
Endang Rahmat ◽  
...  

The medicinal plant, Aspilia africana, has been traditionally used in several African countries to treat many diseases such as tuberculosis, cough, inflammation, malaria, osteoporosis, and diabetes. In this study, we developed a protocol for in vitro propagation of A. africana using indirect shoot organogenesis from leaf and root explants of in vitro-grown seedlings and assessed the tissues at different developmental stages. The highest callus induction (91.9 ± 2.96%) from leaf explants was in the Murashige and Skoog (MS) medium augmented with 1.0 mg/L 6-Benzylaminopurine (BAP) and 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) while from root explants, the highest callus induction (92.6 ± 2.80%) was in the same plant tissue culture medium augmented with 0.5 mg/L BAP and 1.0 mg/L 2,4-D. The best shoot regeneration capacity from leaf-derived calli (i.e., 80.0 ± 6.23% regeneration percentage and 12.0 ± 6.23 shoots per callus) was obtained in medium augmented with 1.0 mg/L BAP and 0.05 mg/L α-Naphthaleneacetic acid (NAA); the best regeneration capacity for root-derived calli (i.e., 86.7 ± 6.24% shoot regeneration percentage and 14.7 ± 1.11 shoots per callus) was obtained in the MS medium augmented with 1.0 mg/L BAP, 0.05 mg/L NAA, and 0.1 mg/L Thidiazuron (TDZ). Regenerated plantlets developed a robust root system in 1/2 MS medium augmented with 0.1 mg/L NAA and had a survival rate of 93.6% at acclimatization. The in vitro regenerated stem tissue was fully differentiated, while the young leaf tissue consisted of largely unorganized and poorly differentiated cells with large intercellular airspaces typical of in vitro leaf tissues. Our study established a protocol for the indirect regeneration of A. africana and offers a basis for its domestication, large-scale multiplication, and germplasm preservation. To the best of our knowledge, this is the first study to develop an indirect regeneration protocol for A. africana and conduct anatomical assessment through the different stages of development from callus to a fully developed plantlet.


Sign in / Sign up

Export Citation Format

Share Document