scholarly journals Tubeimoside-1 inhibits growth via the induction of cell cycle arrest and apoptosis in human melanoma A375 cells

2012 ◽  
Vol 7 (3) ◽  
Author(s):  
Azhar Rasul ◽  
Runmin Song ◽  
Wei Wei ◽  
Yoshikazu Nishino ◽  
Ichiro Tsuji ◽  
...  
Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1170 ◽  
Author(s):  
Yufei Zheng ◽  
Yuqi Wu ◽  
Xi Chen ◽  
Xiasen Jiang ◽  
Kai Wang ◽  
...  

Melanoma is a malignant tumor that begins in the melanocyte and has the highest mortality rate among all cutaneous tumors. Chinese propolis (CP) has been shown to have a potent antitumor effect against various cancers. In this study, we uncovered the combined effects of antiproliferation and anti-inflammation of CP on suppressing the progression of human melanoma cell line A375. We evaluated the alterations of protein expression after CP treatment by Western blot. After CP treatment, A375 cells underwent intrinsic apoptosis and cell cycle arrest. Furthermore, we found that CP suppressed inflammation in A375 cells. NLRP1 (NLR family pyrin domain containing 1), confirmed as a proinflammatory protein in melanoma progression, was downregulated significantly by CP, as were the NLRP1-related caspase activation and recruitment domains (CARD) proteins, including caspase-1 and caspase-4. Additionally, decreasing mRNA levels of IL-1α, IL-1β, and IL-18 further proved the negative regulation of CP on the melanoma inflammatory environment. We also discovered that CP induced autophagy in A375 cells. Interestingly, inhibiting autophagy in CP-treated cells diminished its antitumor effect, suggesting that the autophagy was attributed to CP-induced apoptosis. Collectively, CP is a promising candidate for drug development for melanoma therapy.


2013 ◽  
Vol 27 (4) ◽  
pp. 1196-1204 ◽  
Author(s):  
Fernanda Faião-Flores ◽  
Paulo Rogério Pinto Coelho ◽  
João Dias Toledo Arruda-Neto ◽  
Silvya Stuchi Maria-Engler ◽  
Durvanei Augusto Maria

2015 ◽  
Vol 26 (7) ◽  
pp. 754-762 ◽  
Author(s):  
Sara Carpi ◽  
Stefano Fogli ◽  
Antonella Romanini ◽  
Mario Pellegrino ◽  
Barbara Adinolfi ◽  
...  

2007 ◽  
Vol 67 (3) ◽  
pp. 1221-1227 ◽  
Author(s):  
Wei Jiang ◽  
Peter J. Mikochik ◽  
Jin H. Ra ◽  
Hanqin Lei ◽  
Keith T. Flaherty ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Saud Alarifi ◽  
Daoud Ali ◽  
Saad Alkahtani ◽  
Rafa S. Almeer

The present work was designed to investigate the effect of palladium nanoparticles (PdNPs) on human skin malignant melanoma (A375) cells, for example, induction of apoptosis, cytotoxicity, and DNA damage. Diseases resulting from dermal exposure may have a significant impact on human health. There is a little study that has been reported on the toxic potential of PdNPs on A375. Cytotoxic potential of PdNPs (0, 5, 10, 20, and 40 μg/ml) was measured by tetrazolium bromide (MTT assay) and NRU assay in A375 cells. PdNPs elicited concentration and time-dependent cytotoxicity, and longer exposure period induced more cytotoxicity as measured by MTT and NRU assay. The molecular mechanisms of cytotoxicity through cell cycle arrest and apoptosis were investigated by AO (acridine orange)/EtBr (ethidium bromide) stain and flow cytometry. PdNPs not only inhibit proliferation of A375 cells in a dose- and time-dependent model but also induce apoptosis and cell cycle arrest at G2/M phase (before 12 h) and S phase (after 24 h). The induction of oxidative stress in A375 cells treated with above concentration PdNPs for 24 and 48 h increased ROS level; on the other hand, glutathione level was declined. Apoptosis and DNA damage was significantly increased after treatment of PdNPs. Considering all results, PdNPs showed cytotoxicity and genotoxic effect in A375 cells.


2020 ◽  
Vol 3 (2) ◽  
pp. 194-209 ◽  
Author(s):  
Ana Carolina Ramos Moreno ◽  
Renata de Freitas Saito ◽  
Manoela Tiago ◽  
Renato Ramos Massaro ◽  
Roberta Liberato Pagni ◽  
...  

Among skin cancers, melanoma has the highest mortality rate. The heterogeneous genetic melanoma background leads to a tumor-propagating capacity particularly important in maintaining therapeutic resistance, and tumor recurrence. The identification of efficient molecules able to control melanoma progress represents an important opportunity for new therapeutic strategies, particularly in combination with the current standard-of-care treatments. In this context, several studies have reported the antitumor effects of melatonin against different types of cancer, including melanoma. Here, we describe the underlying mechanisms associated with melatonin’s activity in human melanoma cell lines, focusing on cell cycle and cytoskeleton remodeling. Interestingly, while melatonin induced melanocyte DNA replication, melanoma cells exhibited cell cycle arrest in the G1-phase. This phenomenon was associated with cyclin-D1 downregulation or p21 overexpression. The efficacy of melatonin on melanoma cells survival and proliferation was detected using the clonogenic assay, with a decrease in both the number and size of colonies. Additionally, melatonin induced a dramatic cytoskeleton remodeling in all melanoma cell lines, leading to a star-like morphology or cell swelling. The role of melatonin on melanoma cytoskeleton was associated with the actin disruption, with thinning and/or broken actin fibers, and weak and/or loss of paxillin along stress fibers. These data support the observed findings that melatonin impairs melanoma invasion in skin reconstructed models. Together, our results suggest that melatonin could be used to control melanoma growth and support basic and clinical studies on melatonin as a promising immunometabolic adjuvant for melanoma therapy.


Sign in / Sign up

Export Citation Format

Share Document