scholarly journals Exact Solution of Schrödinger Equation with Inverted Woods-Saxon and Manning-Rosen Potentials

2010 ◽  
Vol 3 (1) ◽  
pp. 25 ◽  
Author(s):  
A. N. Ikot ◽  
L. E. Akpabio ◽  
E. B. Umoren

We have analytically solved the radial Schrödinger equation with inverted Woods-Saxon and Manning-Rosen Potentials. With the ansatz for the wave function, we obtain the generalized wave function and the negative energy spectrum for the system.Keywords: Inverted Woods-Saxon Potentials; Manning-Rosen Potential; Schrödinger Equation.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.5310                J. Sci. Res. 3 (1), 25-33 (2011)

2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


2021 ◽  
pp. 88-88
Author(s):  
Qiaoling Chen ◽  
Zhiqiang Sun

This paper elucidates the main advantages of the exp-function method in finding the exact solution of the nonlinear Schr?dinger equation. The solution process is extremely simple and accessible, and the obtained solution contains some free parameters.


2020 ◽  
Vol 4 (2) ◽  
pp. 48
Author(s):  
Briant Sabathino Harya Wibawa ◽  
A Suparmi ◽  
C Cari

<p class="Abstract">The application bispherical coordinates in Schrödinger equation for the Mobius square plus modified Yukawa potential have been obtained. The Schrödinger equation in bispherical coordinates for the separable Mobius square plus modified Yukawa potential consisting of the radial part and the angular part for the Mobius square plus modified Yukawa potential is solved using the variable separation method to reduce it to the radial part and angular part Schrödinger equation. The aim of this study was to solve the Schrödinger's equation of radial in bispherical coordinates for the Mobius square plus modified Yukawa potential using the Nikiforov Uvarov Functional Analysis (NUFA) method. Nikiforov Uvarov Functional Analysis (NUFA) method used to obtained energy spectrum equation and wave function for the Mobius square plus modified Yukawa potential. The result of energy spectrum equation for Mobius square plus modified Yukawa potential can be shown in Equation (50). The result of un-normalized wave function equation for Mobius square plus modified Yukawa potential can be shown in Table 1.</p>


2018 ◽  
Vol 73 (12) ◽  
pp. 1129-1135
Author(s):  
S.A. Bruce

AbstractIt is known that there is no room for anti-particles within the Schrödinger regime in quantum mechanics. In this article, we derive a (non-relativistic) Schrödinger-like wave equation for a spin-$1/2$ free particle in 3 + 1 space-time dimensions, which includes both positive- and negative-energy eigenstates. We show that, under minimal interactions, this equation is invariant under $\mathcal{P}\mathcal{T}$ and 𝒞 discrete symmetries. An immediate consequence of this is that the particle exhibits Zitterbewegung (‘trembling motion’), which arises from the interference of positive- and negative-energy wave function components.


Sign in / Sign up

Export Citation Format

Share Document