Normalized Wave Function of the Radial Schrödinger Equation Close to the Origin

Author(s):  
Nanny Fröman ◽  
Per Olof Fröman ◽  
Erik Walles ◽  
Staffan Linnaeus
2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


2010 ◽  
Vol 3 (1) ◽  
pp. 25 ◽  
Author(s):  
A. N. Ikot ◽  
L. E. Akpabio ◽  
E. B. Umoren

We have analytically solved the radial Schrödinger equation with inverted Woods-Saxon and Manning-Rosen Potentials. With the ansatz for the wave function, we obtain the generalized wave function and the negative energy spectrum for the system.Keywords: Inverted Woods-Saxon Potentials; Manning-Rosen Potential; Schrödinger Equation.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.5310                J. Sci. Res. 3 (1), 25-33 (2011)


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Sameer Ikhdair ◽  
Ramazan Sever

AbstractMaking an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrödinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, δ and ν are also given, where η depends on a linear combination of the angular momentum quantum number ℓ and the spatial dimensions D and δ is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigensolutions recover their standard analytical forms in literature.


2000 ◽  
Vol 125 (2) ◽  
pp. 1506-1515 ◽  
Author(s):  
O. S. Pavlova ◽  
A. R. Frenkin

Sign in / Sign up

Export Citation Format

Share Document