scholarly journals Impact of Encapsulation on Plantlet Regeneration from in vitro Grown Shoot tips of Citrus aurantifolia (Lime)

2021 ◽  
Vol 31 (1) ◽  
pp. 43-49
Author(s):  
Priyanka Sharma ◽  
Bidhan Roy

In order to conserve diverse species of citrus, an experiment on in vitro micropropagation and production of synthetic seeds from in vitro regenerated plant propagules of the species; Citrus aurantifolia (Lime) was carried out in which shoot tips were found to be suitable for excapsulation of artificial seeds. Highest rate of germination was obtained from the shoot tips when MS was supplemented with 1 mg/l BAP. Beaded shoot tips produced maximum germination (81.43%). Germinated synthetic seeds with well established roots and shoots were were taken out from the culture bottles and transferred in plastic cups containing a mixture of sterile soil: sand and farmyard manure at a ratio of 1:1:1. Seedlings were further shifted in earthen pots and kept in a partial shed net house for 7 days. Those seedlings were finally transferred under the field conditions for acclimatization. Plant Tissue Cult. & Biotech. 31(1): 43-49, 2021 (June)

Author(s):  
D. L. C. K. Fonseka ◽  
W. W. U. I. Wickramaarachchi ◽  
R. P. S. Madushani

The black-oil tree (Celastrus paniculatus Willd) is a highly valued medicinal plant species belong to the Celastraceae family, known as Jyothishmathi in Ayurveda and Duhundu in Sri Lanka and grows as a perennial vine. It is an endangered medicinal plant species recorded in the red list of endangered fauna and flora of Sri Lanka in 1999. The seed oil of Celastrus paniculatus contains sesquiterpene alkaloids namely; celapagine, celapanigine, celapanine and celastrol, used in traditional system of medicine for various disorders and because of its high pharmaceutical value, plants are over exploited in natural habitats. Owing to poor seed germination and lack of successful vegetative propagation methods, domestication and commercial planting of this important medicinal plant species to meet the demand seems impossible. Therefore, it is of high importance to develop a reliable and efficient in vitro propagation to produce black oil plants for commercial use. In this study, it was attempted to produce synthetic seeds of Celestrus paniculatus via in vitro multiple shoot proliferation. Nodal segment explants were collected from freshly emerged age of sprouts, surface sterilized and cultured in Murashige and Skoog medium supplemented with different 6-benzylaminopurine (BAP) and Thidiazuron (TDZ) concentrations for shoot induction. The highest soot proliferation rate; 25 shoot tips/explant were observed with 0.1 mg/L TDZ. Induced shoot tips were used for synthetic seed production after encapsulating with BAP and a-naphthalene acetic (NAA) enriched sodium alginate. Shoot tip encapsulated beads produced with 4% sodium alginate were firm, clear, round and uniform in size and easy to handle. The influence of growth regulators (BAP and NAA) and storage period on the germination of encapsulated shoot tips was studied to evaluate the success of encapsulated shoot tips as a propagule. The beads germinated with 2 mg/L BAP and 0.2 mg/L NAA provided 80% in vitro germination percentage. Shoot tips of synthetic seeds remained green and healthy after storage at 5°C for a period of 8 weeks. Current findings suggest that encapsulated micro shoots (synthetic seeds) could be produced successfully, as the first step in domestication and conservation of Celastrus paniculatus. Further studies required on rooting of micro shoots, acclimatization and transferring of plantlets produced from synthetic seeds to in vivo conditions for domestication and conservation purposes.


Author(s):  
Monika Kamińska ◽  
Jacek Kęsy ◽  
Alina Trejgell

Abstract Taraxacum pieninicum Pawł. is listed as critically endangered species, for which currently applied protection methods are insufficient. The aim of this study was to investigate the possibility of T. pieninicum storage in the form of synthetic seeds under slow-growth conditions in combination with ABA treatment, as one of the ex situ protection methods of this species. The obtained results indicated that darkness was much more favorable condition for synseed storage and did not generate additional stress during cold exposure in contrast to the light conditions. The preculture of shoot tips on the medium supplemented with ABA led to a decrease in the shoots proliferation rate and inhibition of their growth. ABA clearly inhibited growth of the encapsulated shoot tips also during cold storage. Biochemical parameters showed that ABA effectively reduced the negative effect of the cold stress, what was found on the basis of analyzes of H2O2 and TBARS levels in the stored material. Moreover, synseeds stored under light conditions and treated with ABA exhibited decreased level of endogenous jasmonic acid what indicated interaction between those two phytohormones at a low temperature. The study also demonstrated that in vitro culture, cold storage and ABA treatment had no effect on the flowering process of this species after acclimatization to ex vitro conditions.


Author(s):  
Priyanka Sharma ◽  
Bidhan Roy

Biotechnological tools are useful for true-to-type propagation. Shoot tips encapsulation is potential for plant development from pre-existing meristematic tissue. MS medium fortified with 1 and 2 mg/L of BAP (6-bezylaminopurine) was found to be suitable for in vitro mass-multiplication of plantlets (10.18 and 13.05 plantlets/explant, respectively) of Citrus jambhiri from nodal segments. Nodal segments were more appropriate than the shoot tips for in vitro multiplication of plantlets. Synthetic seeds were prepared using 2.5% sodium alginate dropping into 3.0% CaCl2 solution. Maximum germination was recorded when beaded shoot tips were cultured on MS medium fortified with 1 and 2 mg/L of BAP (96.67 and 100.00%, respectively). However, the germination of synthetic seeds was found to be comparatively high than the earlier findings. The results support the use of encapsulated unipolar explants for synthetic seed preparation. These type of capsules could be useful in exchange of sterile material between laboratories, germplasm conservation and direct plant propagation.


Author(s):  
Priyanka Sharma ◽  
Bidhan Roy ◽  
Monish Roy

Based on the long term conservation of several endangered and indigenous species of Citrus, significant impact of biotechnological tools particularly in terms of in-vitro micropropagation methods in addition to synthetic seed production using encapsulation of plant propagules including shoot tips, nodal segments, androgenic embryos, embryogenic callus, etc. in sodium alginate has been highlighted in this manuscript. When seed is not available in enough quantity for raising seedlings for rootstock or have low levels of polyembryony and do not produce adequate quantities of nucellar seedlings, then micropropagation techniques could quickly supply in vitro regenerated rootstock or budwood. Rapid, mass-production and cost-effective biotechnological tools for propagation of citrus rootstocks and budwood would be of great importance in this regard. Reports on another aspect of long term conservation particularly based on storage of cells, tissues and organs of drought tolerant species of Citrus at ultra-low temperature preferably at -196 ºC via applications of cryopreservation techniques using vitrification and encapsulation or dehydration methods has been highlighted in this manuscript. In addition, several research on techniques of in-vitro micrografting using superior scion and rootstocks of two different species of Citrus with an objective of eradication of virus infected citrus stocks for successful production of grafts have been reviewed. Furthermore, effects of explants either through direct and indirect regeneration and conversion into a complete disease free plantlet using suitable synthetic nutrient media along with plant growth regulators at various concentrations and combinations have been highlighted in this manuscript. Hence, the current review is primarily focused on the applications and its effects of superior biotechnological tools for long term conservation of diverse species of citrus for further increasing the potentiality of Citrus industries in addition to genetic improvement and genetic resource conservation.


2016 ◽  
pp. 404
Author(s):  
بهاء عبدالله لفتة الربيعى ◽  
هند حسين عبيد ◽  
تحرير هادى صالح

2020 ◽  
Vol 16 (1) ◽  
pp. 82-87
Author(s):  
P. KISKU ◽  
S. SAHU ◽  
U. SALMA ◽  
S. SINHA RAY ◽  
P. SAHA ◽  
...  

Author(s):  
Dariusz Kulus ◽  
Alicja Tymoszuk

AbstractThe popularity of nanoparticles (NPs) is continuously increasing. To date, however, there has been little research on the application of NPs in plant cryopreservation, i.e. storage of tissues in liquid nitrogen (LN). The aim of this study is to analyze the effect and evaluate the usefulness of gold nanoparticles (AuNPs) in regard to cryobiology studies. In vitro-derived shoot tips of Lamprocapnos spectabilis ‘Valentine’ were cryopreserved with the encapsulation-vitrification protocol. Gold nanoparticles (at 10–30 ppm concentration; 13 nm in size) were added either into the preculture medium; to the protective bead matrix during encapsulation; or to the recovery medium after rewarming of samples. The control plants were produced from cryopreserved explants non-treated with nanoparticles or treated with colloid dispersion medium without NPs. A non-LN-treated standard was also considered. The influence of AuNPs on the cryopreservation efficiency was determined by evaluating the recovery rate of explants and their morphogenic response; the membrane stability index (MSI); the concentration of pigments in shoots; and the antioxidant enzymes activity. The genetic stability of the plant material was evaluated using Start Codon Targeted Polymorphism (SCoT) markers. It was found that 10 ppm of AuNPs added into the alginate bead matrix improved the recovery level of LN-derived shoot tips (70.0%) compared to the non-NPs-treated cryopreserved control (50.5%). On the other hand, the presence of nanoparticles in the recovery medium had a deleterious effect on the survival of explants. AuNPs usually had no impact on the MSI (73.9–85.9%), except for those added into the recovery medium at the concentration of 30 ppm (decline to 55.8%). All LN-derived shoots were shorter and contained less chlorophyll and carotenoids than the untreated standard. Moreover, the application of AuNPs affected the enzymatic activity in L. spectabilis. Minor genetic variation was found in 8.6% of plants if AuNPs were added either into the preculture medium (at 10 and 20 ppm) or to the alginate matrix (at 30 ppm). In conclusion, AuNPs added at a lower concentration (10 ppm) into the protective bead matrix can significantly improve the cryopreservation efficiency in L. spectabilis with no alternation in the DNA sequence.


2010 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
M. F. Hasan ◽  
B. Sikdar

An efficient protocol for plant regeneration through multiple shoots induction from shoot tips of Polygonum hydropiper (L.) was established. The highest percentage (96.6) of multiple shoot induction and number of shoots (9.0) per culture were found on MS supplemented with 2.0 mg/l Kn. The induced shoots were excised and inoculated on to MS contains different concentrations of IBA or NAA for rooting. The highest percentage (90.0) of root induction and the highest number of roots per shoot (12.0) was found on MS having 1.0 mg/l IBA. Well rooted plantlets were acclimated properly and transplanted in the soil under natural condition, where cent per cent plantlets survived and grew successfully. Key words:  Polygonum hydropiper, Shoot tips, In vitro propagation D.O.I. 10.3329/ptcb.v20i1.5970 Plant Tissue Cult. & Biotech. 20(1): 73-79, 2010 (June)


Sign in / Sign up

Export Citation Format

Share Document