scholarly journals On the Performance of Delay-Tolerant Routing Protocols in Intermittently Connected Mobile Networks

2015 ◽  
Vol 43 ◽  
pp. 29-38 ◽  
Author(s):  
Md. Sharif Hossen ◽  
Muhammad Sajjadur Rahim

Delay-Tolerant Networks are used to enable communication in challenging environments where nodes are intermittently connected, and an end-to-end path does not exist all the time between source and destination, e.g., Intermittently Connected Mobile Networks (ICMNs). Therefore, network environments, where the nodes are characterized by opportunistic connectivity, are appropriately modeled as Delay-Tolerant Networks (DTNs). In this paper, we have investigated the performance of DTN routing protocols, namely Epidemic, PRoPHET, and Spray-and-Wait (Binary version) in an ICMN scenario. Their performances are analyzed in terms of delivery probability, average latency, and overhead ratio of varying message generation rates and number of mobile nodes, respectively. In addition, the impacts of varying buffer size and Time-to-Live (TTL) on their performances are investigated. For evaluating these performance metrics, we have used Opportunistic Network Environment (ONE) simulator as the simulation tool. The outcome of this work shows that for the ICMN scenario, the best DTN routing technique is Binary Spray-and-Wait, whereas Epidemic routing exhibits the worst performance in terms of all the metrics considered here.

2018 ◽  
Vol 7 (3) ◽  
pp. 1735 ◽  
Author(s):  
Md. Sharif Hossen ◽  
Md. Masum Billah ◽  
Suraiya Yasmin

Delay-Tolerant Networks (DTNs) are kinds of networks where there does not exist any complete end-to-end route from source to destination. Such networks can also be referred to as Intermittently Connected Mobile Networks (ICMNs), which are featured by asymmetric data rates, large delay, limited resources and high error rates. In this network, size of buffer and Time-to-Live (TTL) for fixed number of nodes and message generation rates contribute to the network performance because of limited resources and short life span of a packet in the net-work. Therefore, investigating efficient routing for altering TTL and size of buffer is very important for overall network performance. This paper presents a performance analysis based on simulation of the impact of buffer size and TTL for several DTN routing protocols in ICMNs scenario. ONE, i.e., Opportunistic Network Environment is used to simulate the routing protocols considering three performance metrics: delivery ratio, mean latency and overhead ratio. Investigated results mention that Spray-and-Focus (SNF) routing exhibits the best performance for altering TTL and size of buffer than other DTN routing protocols, i.e., Epidemic, PRoPHET, PRoPHETv2, MaxProp, RAPID, and Binary-SNW in the considered performance metrics and simulation scenario. 


2014 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Sweta Jain ◽  
Meenu Chawla

Delay Tolerant Networks (DTN) are mobile ad-hoc networks in which connections are often disruptive or discontinuous. Data forwarding using an appropriate routing strategy is a highly confronting issue in such networks. The traditional ad-hoc routing protocols which require end-to-end connectivity fail to function here due to frequent occurrences of network partitions. Spray and Wait (SaW) routing algorithm is a popular controlled replication based DTN protocol which provides a better delivery performance balancing the average delay and overhead ratio. An empirical analysis of various spray based approaches that have been proposed for DTN has been performed in this paper to compare and evaluate the basic Spray and Wait algorithms (Source Spray and Wait and Binary Sprayand Wait) with some of its major improvements (Spray andFocus, Average Delivery Probability Binary Spray and Wait and Composite methods to improve Spray and Wait). The main aim of this comparative study is to verify the effect of utility metrics in spray based routing protocols over simple spray based approaches. The ONE simulator has been used to provide a simulation environment to evaluate these algorithms and generate results. The performance metrics used are delivery ratio (DR), overhead ratio (OR) and average latency (ALat). The simulation results show that in terms of delivery ratio and average latency, Composite methods to improve Spray and Wait which incorporates delivery predictability metric in the wait phase and also acknowledgements to delete already deliveredmessages from a node’s buffer, outperforms all the other variants compared.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3758 ◽  
Author(s):  
Armir Bujari ◽  
Carlos Calafate ◽  
Juan-Carlos Cano ◽  
Pietro Manzoni ◽  
Claudio Palazzi ◽  
...  

In this paper, we propose GeoSaW, a delay-tolerant routing protocol for Airborne Networks in Search and Rescue scenarios. The protocol exploits the geographical information of UAVs to make appropriate message forwarding decisions. More precisely, the information about the future UAV’s motion path is exploited to select the best UAV carrying the message towards the destination. Simulation results show that the proposed solution outperforms the classic DTN routing protocols in terms of several performance metrics.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Angulakshmi ◽  
M. Deepa ◽  
M. Vanitha ◽  
R. Mangayarkarasi ◽  
I. Nagarajan

PurposeIn this study, we discuss three DTN routing protocols, these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait has highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.Design/methodology/approachDelay-Tolerant Network (DTN) is a network designed to operate effectively over extreme distances, such as those encountered in space communications or on an interplanetary scale. In such an environment, nodes are occasional communication and are available among hubs, and determinations of the next node communications are not confirmed. In such network environment, the packet can be transferred by searching current efficient route available for a particular node. Due to the uncertainty of packet transfer route, DTN is affected by a variety of factors such as packet size, communication cost, node activity, etc.FindingsSpray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others.Originality/valueThe primary goal of the paper is to extend these works in an attempt to offer a better understanding of the behavior of different DTN routing protocols with delivery probability, latency and overhead ratio that depend on various amounts of network parameters such as buffer size, number of nodes, movement ratio, time to live, movement range, transmission range and message generation rate. In this study, we discuss three DTN routing protocols: these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.


2021 ◽  
Vol 14 (2) ◽  
pp. 42
Author(s):  
IYAS ALODAT

In this paper will discuss and examine message transmission from the attacker process within the scope of Delay Tolerance Networks (DTNs). DTNs are a new area of research that can be developed in networking. Delay-tolerant networks are those networks that may not have a complete path between networks end-to-end via direct links and may be under development for a long time. As part of the improvement, we will compare a survey of DTN routing protocols with a real region area, and then taking into account the possibilities of detecting the presence of areas of weakness that lead to penetration, which will occur in the nodes while on the move. In this study, we will use the ONE simulator to track messages within nodes.


Sign in / Sign up

Export Citation Format

Share Document