scholarly journals Effect of Water Soluble Polymers on Dissolution Enhancement of Ibuprofen Solid Dispersion Prepared by Fusion Method

1970 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Riaz Uddin ◽  
Nadia Saffoon ◽  
Naz Hasan Huda ◽  
Yeakuty Marzan Jhanker

The purpose of this study was to prepare and characterize solid dispersions of the NSAID Ibuprofen with PEG 6000, Poloxomer 188 and Poloxomer 407 with the intention of improving its dissolution properties. The solid dispersions were prepared by the fusion method. Evaluation of the properties of the dispersions was performed using dissolution studies. The results obtained showed that the rate of dissolution of Ibuprofen was considerably improved when formulated in solid dispersions with PEG 6000 and poloxomer 188. Solid dispersions with poloxomer 407 showed drug retarding capability which may trigger more research in the intension of exploiting this feature to prepare sustained release dosage form. Key words: Ibuprofen; polyethylene glycol; poloxomer; solid dispersion; fusion method; dissolution DOI: 10.3329/sjps.v3i1.6801S. J. Pharm. Sci. 3(1): 63-67

2002 ◽  
Vol 70 (3) ◽  
pp. 309-316
Author(s):  
Okonogi S ◽  
Sirithunyalung J ◽  
Sirithunyalig B ◽  
Wolschann P ◽  
Viernstein H

Solid dispersions of ofloxacin (OFX) and of a number of carriers including chitosan and the water soluble polymers polyethylene glycol (PEG) 4000, PEG 20000, and polyvinylpyrrolidone K- 90 were prepared by solvent evaporation method in order to increase the dissolution of the drug. The solid dispersions were subjected to X-ray diffraction, DSC, and dissolution to characterize their physicochemical and dissolution properties. The results demonstrated a decrease in drug crystallinity at higher amounts of carrier. Dissolution studies indicated that the dissolution rate of OFX was markedly increased in these solid dispersion systems compared with the pure drug. The results also showed that the increase in dissolution rate was higher when the weight fraction of carriers increased. An influence of molecular weight of PEG on OFX dissolution could also be observed. In solid dispersion with 1:9 ratio drug to carrier, PEG 4000 gave highest drug dissolution rate, whereas in 1:1 ratio, chitosan seems to be the best carrier for drug release. It was concluded that chitosan might be the carrier of choice for dissolution enhancement in solid dispersions with high content of drug.


1970 ◽  
Vol 4 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Nadia Saffoon ◽  
Yeakuty Marzan Jhanker ◽  
Naz Hasan Huda

The purpose of this study was to prepare and characterize solid dispersions of the NSAID Ibuprofen with HPMC, HPC, icing sugar, dextrose, mannitol and lactose with the intention of improving its dissolution properties. The solid dispersions were prepared by the fusion method. Evaluation of the properties of the dispersions was performed using dissolution studies. The results obtained showed that the rate of dissolution of Ibuprofen was considerably improved when formulated in solid dispersions with HPMC and HPC. Solid dispersions with icing sugar, dextrose, mannitol and lactose showed drug retarding capability which may trigger more research in the intension of exploiting this feature to prepare sustained release dosage form.   Key words: Ibuprofen; Solid dispersion; Fusion method; Dissolution rate. DOI: http://dx.doi.org/10.3329/sjps.v4i1.8864 SJPS 2011; 4(1): 31-37


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1679
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.


Author(s):  
Md. Shahidul Islam ◽  
Rasheda Akter Lucky

The poor aqueous solubility of the drug exhibits in variable dissolution rate and hence poor bioavailability. Aceclofenac is poorly water soluble drug. The aim of the present study was to improve the water solubility and the dissolution rate of Aceclofenac by solid dispersion technique using different water soluble polymers. The term solid dispersions refer to the dispersions of one or more active ingredients in an inert carrier or matrix at solid state. In this study, binary solid dispersion of Aceclofenac were prepared by fusion method using Polyethylene glycol 6000 (PEG 6000), Polyethylene glycol 4000 (PEG 4000), Poloxamer as carrier. Different drug-carrier weight ratio was used for this study. The effect of the carrier on the solubility and in-vitro dissolution were studied. It was found the drug was released 26.86% after 5 minutes and only 40.19% within 60 mins from active Aceclofenac on the other hand the release pattern of Aceclofenac from the binary SD formulation containing PEG 6000 in 1:5 ratio (Formulation coding: A5) showed the best result in comparison of other binary and ternary SD formulations which was 62.29% after 5 min and 83.03% within 60 mins. The hydrophilic polymers used for the preparation of solid dispersion are showed significant increase in the solubility of Aceclofenac.


Author(s):  
Jani Rupal ◽  
Jani Kaushal ◽  
Setty C. Mallikarjuna ◽  
Jani Kaushal

Aceclofenac is a potent anti-inflammatory analgesic agent indicated for acute and chronic treatment of rheumatoid arthritis, ostio arthritis, and onkylosing spondylytis. Aceclofenac is poorly water soluble and may show dissolution limited absorption. Solid dispersions (SDs) of Aceclofenac in PEG-6000, PVP were prepared by solvent evaporation method. The solid dispersion was characterized for physical appearance, solubility and IR. FTIR study reveled that drug was stable in SDs. Solubility of Aceclofenac from SDs increased in distilled water. The drug content was found to be high and uniformly distributed in the all formulation. Dissolution of drug increased from all the solid dispersion. Dissolution of Aceclofenac increased with increase in the proportion of carriers (1:1, 1:5, and 1:9). Of both the carriers used, dissolution of the drug was more in PEG 6000 based SDs. It is concluded that dissolution of the Aceclofenac could be improved by solid dispersion and PEG 6000 based solid dispersions were more effective in the enhancing the dissolution.


Author(s):  
Rahul Radke ◽  
Neetesh K. Jain

Aim: Ambrisentan is a endothelin type A selective receptor antagonist used in the management of pulmonary arterial hypertension. Ambrisentan is BCS Class II drug haves very poor solubility in water and shows incomplete absorption after oral administration. The present work was aimed to study the effect of amphiphilic graft co-polymer carrier on enhancement of solubility and dissolution rate of poorly water soluble drug ambrisentan. To improve the aqueous solubility of ambrisentan solid dispersion was formulated by using novel carrier amphiphilic graft co-polymer (Soluplus® ). Materials and Methods: Solid dispersion was prepared by kneading technique by utilizing various ratios of carrier. Obtained solid dispersions ware evaluated for solubility, percentage yield, drug content and in vitro dissolution study. Powder characterization was performed by infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Results: FTIR spectroscopy shows no interaction between drug and polymer. DSC study showed that endothermic peak of drug was completely disappeared in Solid dispersion suggesting complete miscibility of drug in Soluplus®. XRD study suggest the conversion of crystalline ambrisentan in to amorphous form. All solid dispersions prepared with Soluplus® as a carrier showed increase in solubility. Solubility of ambrisentan was found to be increased 7.17 fold in optimized SD formulation ASD5. In vitro dissolution study showed the faster drug release from SD formulation compare to its pure form. All solid dispersion formulation’s release more than 50% of drug in first 10 min. Conclusion: This study conclude that the preparation of amphiphilic graft co-polymer based solid dispersion prepared by kneading technique is found to be useful in enhancement the solubility and dissolution rate of ambrisentan.


2019 ◽  
Vol 11 (1) ◽  
pp. 241 ◽  
Author(s):  
D. Christopher Vimalson ◽  
S. Parimalakrishnan ◽  
N. S. Jeganathan ◽  
S. Anbazhagan

Objective: The present study was aimed to enhance the solubility of poorly water-soluble drug (BCS Class II) Febuxostat using water-soluble polymers.Methods: Pre-formulation studies like drug excipient compatibility studies by Fourier-transform infrared spectroscopyDifferential scanning calorimetry and determination of saturation solubility of drug individually in various media like distilled water and pH 7.4 phosphate buffer. Solid dispersions of Febuxostat was prepared using Polyethylene glycol (PEG 6000) (fusion method) and Polyvinyl pyrrolidone (PVP K30) (solvent evaporation method) in various ratios like 1:1, 1:2, 1:3 and 1:4 separately. The formulated solid dispersions were evaluated for percentage yield, drug content and in vitro dissolution studies.Results: From the results of pre-formulation studies it was revealed that there was no interaction between drug and excipients and the pure drug was poorly soluble in water. The percentage yield of all formulations was in the range of 54-78 %, and drug content was in the range of 43-78 mg. The solid dispersion containing polyvinylpyrrolidone K 30 in 1:4 ratio showed the highest amount of drug release at the end of 30 min than other formulations.Conclusion: Finally it was concluded that solid dispersion prepared with PVP K-30 in 1:4 ratio by solvent evaporation method was more soluble than by fusion method.


Sign in / Sign up

Export Citation Format

Share Document