cellulosic polymers
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 14 (11) ◽  
pp. 1201
Author(s):  
Bharti Gupta ◽  
Varsha Mishra ◽  
Sankalp Gharat ◽  
Munira Momin ◽  
Abdelwahab Omri

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed A. H. Abdellatif ◽  
Hamad N. H. Alturki ◽  
Hesham M. Tawfeek

AbstractThe use of cellulosic polymers as efficient reducing, coating agents, and stabilizers in the formulation of silver nanoparticles (AgNPs) with antioxidant and antibacterial activity was investigated. AgNPs were synthesized using different cellulosic polymers, polyethylene glycol, and without polymers using tri-sodium citrate, for comparison. The yield, morphology, size, charge, in vitro release of silver ion, and physical stability of the resulting AgNPs were evaluated. Their antioxidant activity was measured as a scavenging percentage compared with ascorbic acid, while their antibacterial activity was evaluated against different strains of bacteria. The amount of AgNPs inside bacterial cells was quantified using an ICP-OES spectrometer, and morphological examination of the bacteria was performed after AgNPs internalization. Cellulosic polymers generated physically stable AgNPs without any aggregation, which remained physically stable for 3 months at 25.0 ± 0.5 and 4.0 ± 0.5 °C. AgNPs formulated using ethylcellulose (EC) and hydroxypropyl methylcellulose (HPMC) had significant (p ≤ 0.05; ANOVA/Tukey) antibacterial activities and lower values of MIC compared to methylcellulose (MC), PEG, and AgNPs without a polymeric stabilizer. Significantly (p ≤ 0.05; ANOVA/Tukey) more AgNPs-EC and AgNPs-HPMC were internalized in Escherichia coli cells compared to other formulations. Thus, cellulosic polymers show promise as polymers for the formulation of AgNPs with antioxidant and antibacterial activities.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 121 ◽  
Author(s):  
Bruno Solis-Cruz ◽  
Daniel Hernandez-Patlan ◽  
Victor Petrone ◽  
Karine Pontin ◽  
Juan Latorre ◽  
...  

To evaluate the effect of cellulosic polymers (CEL) and curcumin (CUR) on aflatoxin B1 (AFB1) toxic effects on performance, and the biochemical and immunological parameters in broiler chickens, 150 one-day-old male broiler chicks were randomly allocated into five groups with three replicates of 10 chickens per pen: Negative Control (feed); AFB1 (feed + 2 ppm AFB1); CUR (feed + 2 ppm AFB1 + Curcumin 0.2%); CEL (feed + 2 ppm AFB1 + 0.3% Cellulosic polymers); and, CEL + CUR (feed + 2 ppm AFB1 + 0.3% Cellulose polymers + 0.2% Curcumin). Every week, body weight, body weight gain, feed intake, and feed conversion ratio were calculated. On day 21, liver, spleen, bursa of Fabricius, and intestine from five broilers per replicate per group were removed to obtain relative organ weight. Histopathological changes in liver, several biochemical biomarkers, antibody titers, and muscle and skin pigmentation were also recorded. Dietary addition of 0.3% CEL and 0.2% CUR separately significantly diminished some of the toxic effects resulting from AFB1 on performance parameters, relative organs weight, histopathology, immune response, and serum biochemical variables (P < 0.05); however, the combination of CUR and CEL showed a better-integrated approach for the management of poultry health problems that are related with the consumption of AFB1, since they have different mechanisms of action with different positive effects on the responses of broiler chickens.


MRS Bulletin ◽  
2018 ◽  
Vol 43 (10) ◽  
pp. 730-733 ◽  
Author(s):  
Woo Jin Hyun ◽  
Ethan B. Secor ◽  
Mark C. Hersam

Sign in / Sign up

Export Citation Format

Share Document