scholarly journals Enhancing dissolution profile of diazepam using hydrophilic polymers by solid dispersion technique

2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430

Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Author(s):  
Md. Shahidul Islam ◽  
Rasheda Akter Lucky

The poor aqueous solubility of the drug exhibits in variable dissolution rate and hence poor bioavailability. Aceclofenac is poorly water soluble drug. The aim of the present study was to improve the water solubility and the dissolution rate of Aceclofenac by solid dispersion technique using different water soluble polymers. The term solid dispersions refer to the dispersions of one or more active ingredients in an inert carrier or matrix at solid state. In this study, binary solid dispersion of Aceclofenac were prepared by fusion method using Polyethylene glycol 6000 (PEG 6000), Polyethylene glycol 4000 (PEG 4000), Poloxamer as carrier. Different drug-carrier weight ratio was used for this study. The effect of the carrier on the solubility and in-vitro dissolution were studied. It was found the drug was released 26.86% after 5 minutes and only 40.19% within 60 mins from active Aceclofenac on the other hand the release pattern of Aceclofenac from the binary SD formulation containing PEG 6000 in 1:5 ratio (Formulation coding: A5) showed the best result in comparison of other binary and ternary SD formulations which was 62.29% after 5 min and 83.03% within 60 mins. The hydrophilic polymers used for the preparation of solid dispersion are showed significant increase in the solubility of Aceclofenac.


Author(s):  
S. Kaushik ◽  
Kamla Pathak

<p><strong>Objective: </strong>The aim of the present study was to develop and evaluate the monolithic osmotic tablet (MOT) composed of the solid dispersion of ketoprofen (KETO), a poorly water-soluble drug. Solid dispersion technique is generally used for immediate release, as this maximizes the amount of drug absorbed. Sustained release may be obtained by combining solid dispersion technique with MOT so as to increase the therapy efficacy and patient compliance.</p><p><strong>Methods: </strong>Solid dispersion of KETO was prepared by using solvent melt method with polyethylene glycol (PEG) 6000, a hydrophilic carrier. The ratio of KETO to PEG 6000 were 1:1, 1:3 and 1:5 (%w/w). These solid dispersions were characterized by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD) to ascertain whether there were any physicochemical interactions between drug and carrier.</p><p>The tablet core was prepared by using Polyox N80 (a suspending agent), sodium chloride (an osmotic agent), a solid dispersion consisting of PEG 6000 and KETO followed by a coating of cellulose acetate to make the monolithic osmotic tablet.</p><p><strong>Results: </strong>The results of DSC and PXRD indicated that the drug was in the amorphous state in solid dispersion when PEG 6000 was used as a carrier. The dissolution rate of the solid dispersion was much faster than those for the corresponding physical mixture and pure drug. The optimized MOT formulations were able to deliver KETO at the constant zero order release, above 95% <em>in vitro</em>, independent to environmental media and stirring rate. The release rate of KETO in the MOT is controlled by osmotic pressure, suspending agent and drug solubility in solid dispersion.</p><p><strong>Conclusion: </strong>The monolithic osmotic tablet containing solid dispersion has great potential in the controlled delivery of ketoprofen, a water-insoluble drug.</p><p><strong>Keywords: </strong>Ketoprofen, Monolithic osmotic tablet, Solid dispersion, Water insoluble</p>


Author(s):  
Mohan M Varma ◽  
Satish Kumar P

Gliclazide is an anti-diabetic drug. It is a BCS class-II (poorly water soluble) drug and its bioavailability is dissolution rate limited. The dissolution rate of the drug was enhanced by using the solid dispersion technique. Solid dispersions were prepared using PVP-K30 (polyvinylpyrrolidone) and hydroxypropyl-β-cyclodextrin (HP BCD) as the hydrophilic carriers. The solid dispersions were characterized by using DSC (Differential scanning calorimetry), XRD (X-ray diffractometry) and FTIR (Fourier transform infrared spectroscopy). Solid dispersions were formulated into tablets. The formulated tablets were evaluated for the quality control parameters and dissolution rates. The solid-dispersion tablets enhanced the dissolution rate of the poorly soluble drug. The optimized formulation showed a 3 fold faster drug release compared to the branded tablet. The XRD studies demonstrated the remarkable reduction in the crystallinity of the drug in the solid dispersion. The faster dissolution rate of the drug from the solid dispersion is attributed to the marked reduction in the crystallinity of the drug. The DSC and FTIR studies demonstrated the absence of the drug-polymer interaction.


Author(s):  
Md Armin Minhaz ◽  
Md Mofizur Rahman ◽  
Md Qamnul Ahsan ◽  
Abul Bashar Ripon Khalipha ◽  
Mohammed Raihan Chowdhury

In order to investigate the effect of polymers on release mechanism of poorly soluble drugs from solid dispersions, Clonazepam was used as a model drug for these purposes. Five types of solid dispersions were prepared using polyethylene glycol 6000 (PEG- 6000), Kollicoat IR, Kollidon VA 64 and Poloxomer in different drug-tocarrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solvent evaporation method was used for preparation of solid dispersions. The in-vitro dissolution study with temperature of 37° C and a paddle method, 100 rpm was used in 1000 ml of distilled water as dissolution medium in each dissolution basket for the pure drug and solid dispersions. For pure Clonazepam showed very slow dissolution rate and the solid dispersion considerably enhanced the dissolution rate. Decreased crystalline and increased amorphous fraction of the drug was probably done by wettability and dispersibility. The highest improvement in wettability and dissolution rate of Clonazepam was observed in PEG-6000, Poloxomer and Kollidon VA 64 (1:10 ratio). Solid dispersions containing polymer (1:10 ratio) prepared by solvent method showed significant improvement in the release profile as compared to pure drug, Clonazepam. DOI: http://dx.doi.org/10.3329/ijpls.v1i2.12952 International Journal of Pharmaceutical and Life Sciences Vol.1(2) 2012


Author(s):  
Pratik Swarup Das ◽  
Sushma Verma ◽  
Puja Saha

Fast dissolving tablets are also called as mouth-dissolving tablets, melt-in mouth tablets, orodispersible tablets, quick dissolving etc. Fast dissolving tablets are those when put on tongue disintegrate instantaneously releasing the drug, which dissolve or disperses in the saliva. The faster the drug dissolved into solution, quicker the absorption and onset of clinical effect. Oral routes of drug administration have wide acceptance up to 50-60% of total dosage forms. Fast dissolving tablet containing solid dispersion was developed to improve the dissolution of drug and stability of solid dispersion. They are disintegrating and/or dissolve rapidly in the saliva without the need for water. Thus it is regarded as the safest, most convenient and most economical method of drug delivery having the highest patient compliance. The later part of the article focus on the progress in methods of manufacturing, evaluation and various latest technologies involved in the development of Fast dissolving tablets. Solid dispersion is basically a drug–polymer two-component system; the drug–polymer interaction is the determining factor in its design and performance. It also discusses about modern characterization technique to characterize solid dispersion. In this review, it is intended to discuss the recent advances related on the area of solid dispersion technology. Different methods are also been used for preparation of solid dispersions such as Melting method, Solvent method, Melting solvent method, Melt extrusion method, lyophilisation Technique, Melt Agglomeration Process, The Use Of Surfactant, Electro spinning and Super Critical Fluid Technology. The introduction of fast dissolving dosage forms has solved some of the problems encountered in administration of drugs to the pediatric and elderly patient, which constitutes a large proportion of the world's population. Solid dispersions have attracted considerable interest as an efficient means of improving the dissolution rate and hence the bio availability of a range of poorly water-soluble drugs. The focus of one part of the review article is based on solid dispersion mainly advantages, disadvantages, types, the method of preparation, and characterization of the solid dispersion at laboratory and industrial level.


2017 ◽  
Vol 15 (2) ◽  
pp. 195-201
Author(s):  
Md Zahir Uddin ◽  
Jakir Ahmed Chowdhury ◽  
Ikramul Hasan ◽  
Md Selim Reza

This study was carried out to improve the dissolution properties of loratadine by solid dispersion technique. A series of solid dispersions of loratadine in PVP K-30 (1:1, 1:3 and 1:5) were prepared by kneading technique. The prepared solid dispersions were characterized by various physicochemical properties (fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy) and the dissolution characteristics were compared with loratadine and the physical mixtures of loratadine. It was revealed from the physicochemical analyses that there was a good compatibility between drug and carrier. On the other hand, the drug release from the prepared binary solid dispersions was significantly enhanced in comparison to both drug alone and the physical mixtures. Finally solid dispersion of loratadine: PVP K-30 prepared as 1:5 ratio was found to be described by non-Fickian release mechanism and was selected as the best formulation in this study.Dhaka Univ. J. Pharm. Sci. 15(2): 195-201, 2016 (December)


2012 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Utpal Kumar Karmakar

The aim of the present study was to increase the solubility of a poorly water soluble BCS class II drug, valsartan. Liquisolid technology and solid dispersion by kneading method were techniques used to improve the solubility of the drug by using non-volatile solvents and some hydrophilic carriers. Liquisolid compacts were prepared by dissolving the drug in suitable non volatile solvents. The various non volatile solvents used were PG, PEG, and glycerine. The carrier coating materials play an important role in improving the solubility of the drug. The dissolution rate of the drug was increased by using propylene glycol as non-volatile solvent at 20:1 ratio of carrier to coating material. Solid dispersion by kneading method were another attempt to improve solubility the various carrier materials used were PVP K 30, PEG 6000 and mannitol, these carriers are used in various ratios to improve its solubility. The dissolution rate of drug using solid dispersion kneading method with mannitol was increased at 1:3 ratio. The DSC and FTIR studies revealed no drug excipients interactions, whereas XRD revealed the reduced crystalinity of drug, which showed enhanced solubility. From the results it was concluded that the liquisolid compacts enhanced the solubility of valsartan in comparison to traditional solid dispersion method.DOI: http://dx.doi.org/10.3329/sjps.v4i2.10441  S. J. Pharm. Sci. 4(2) 2011: 58-62


Author(s):  
HUSSEIN K. ALKUFI ◽  
ASMAA M. RASHID

Objective: The aims of the study to enhance solubility and dissolution of famotidine using natural polymer. Solubility study of a drug is one of the contributing factors of its oral bioavailability. The formulation of poorly soluble drugs for oral delivery presents a challenge to the formulation technologists. Methods: The present study has shown that it is possible to raise the solubility for poorly soluble drugs like famotidine, by preparing solid dispersion using natural water-soluble polymer (xyloglucan and hyaluronic acid) as solubilizer through solvent evaporation method. Physical mixture and solid dispersion of famotidine with xyloglucan (XG) or hyaluronic acid in a ratio of 1:1, 1:2, 1:3 were prepared. Solubility study, drug content, dissolution profile and compatibility study were performed for famotidine in solid dispersions XS1, XS2, XS3, HS4, HS5, HS6 as well as in physical mixtures at a ratio 1:1 for both polymer (XG and hyaluronic acid). Results: It was observed that solid dispersions of each drugs showed an increase in dissolution rate in comparison with its pure drug in the ratio of 1:1 (Drug: carrier). It can be concluded that with the care and proper use of xyloglucan, the solubility of drugs poorly soluble can be improved. The prepared solid dispersion showed improvement of drug solubility in all prepared formulas. The best result was obtained with formula XS1 (famotidine: xyloglucan at ratio 1:1) that showed 26 fold increase in solubility compared to the solubility of pure drug. Conclusion: The natural solid dispersion, increased wettability and reduced crystallinity of the drug which leads to improving solubility and dissolution.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


Sign in / Sign up

Export Citation Format

Share Document