scholarly journals Role of HRCT Scan of Chest in the Evaluation of COVID-19 Pneumonia

2021 ◽  
Vol 34 (1) ◽  
pp. 109-114
Author(s):  
Md Hafizur Rahman ◽  
Nashid Amir ◽  
Md Anisur Rahman ◽  
AHM Tohurul Islam ◽  
Md Saiful Islam ◽  
...  

Coronavirus disease (COVID-19) pneumonia emerged in Wuhan, China, in December 2019. It is a highly contagious viral disease spreading worldwide, with a rapid increase in the number of cases & deaths. COVID-19 pneumonia is characterized by fever, fatigue, dry cough, and dyspnea with other systemic features such as diarrhea, altered sensorium, stroke & multi-organ failure. HRCT chest is one of the most sensitive modalities for early detection of COVID-19 pneumonia & monitor the outcome of these patients. It is an important complement to the reverse transcriptase polymerase chain reaction (RT-PCR) tests. HRCT shows high specificity & sensitivity in detection of COVID-19 pneumonia being 90.7% & 70.8% respectively. In this pandemic situation, proper diagnosis & management of COVID-19 positive cases largely depends on HRCT findings & severity scoring. TAJ 2021; 34: No-1: 109-114

Author(s):  
Seidu A. Richard ◽  
Sylvanus Kampo ◽  
Marian Sackey ◽  
Maite Esquijarosa Hechavarria ◽  
Alexis D. B. Buunaaim ◽  
...  

: The world is currently engulfed with a viral disease with no cure. So, far, millions of people are infected with the virus across the length and breadth of world with thousand losing their lives each passing day. The WHO is February 2020 classified the virus as a coronavirus and the name Coronavirus-19 (CoV-19) was offered to the virus. The disease caused by the virus was termed coronavirus disease-19 (COVID-19). The pathogenesis of COVID-19 is associated with elevation of several immune plays as well as inflammatory factors which contributes to cytokine storms. Currently, the detection of CoV-19 RNA is through reverse transcriptase polymerase chain reaction (RT-PCR). Mesenchymal stem cells (MSCs) are capable of suppressing several kinds of cytokines via the paracrine secretion system. Therefore, MSCs therapy could be game charges in the treatment of the current COVID-19 pandemic. Also, intravenous IG may be capable of suppressing the high expression of IL-6 by the CoV-19 resulting in lessen disease burden. Anti-inflammatory medications like, corticosteroids, tocilizumab, glycyrrhetinic acid, as well as etoposide may be very advantageous in decreasing the COVID-19 burden because, their mode of action targets the cytokine storms initiated by the CoV-19. It is important to indicate that, these medication does not target the virus itself. Therefore, potent CoV-19 anti-viral medications are needed to completely cure patients with COVID-19. Also, a vaccine is urgently needed to stop the spread of the virus. This review therefore elucidates the immune players in the management of COVID-19; focusing principally on MSCs and inflammatory mediators.


2020 ◽  
Author(s):  
Gowri Nayar ◽  
Ed Seabolt ◽  
Mark Kunitomi ◽  
Akshay Agarwal ◽  
Kristen L. Beck ◽  
...  

Rapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However, the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.


2004 ◽  
Vol 12 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Carlos Ferreira dos Santos ◽  
Vivien Thiemy Sakai ◽  
Maria Aparecida de Andrade Moreira Machado ◽  
Daniela Nicole Schippers ◽  
Andrew Seth Greene

Various molecular biology techniques have become available in the last few years. One of the most revolutionary of these techniques regarding nucleic acid analysis is the polymerase chain reaction (PCR), which was first described in 1985. This method relies on the exponential amplification of specific DNA fragments, resulting in millions of copies that can serve as templates for different kinds of analyses. PCR can be preceded by a reverse transcription (RT) reaction in order to produce cDNA from RNA (RT-PCR). RT-PCR provides the possibility to assess gene transcription in cells or tissues. PCR and RT-PCR techniques have been instrumental in dental research, and show potential to be used for diagnosis as well as for treatment and prevention of many diseases (dental caries, periodontal disease, endodontic infections and oral cancer). Compared to other traditional methodologies, PCR and RT-PCR show many advantages including high specificity, sensitivity, and speed. Since PCR and RT-PCR are relatively new techniques and are not available to most students and professionals involved with dentistry, the aim of this work is to present the details of these techniques as well as dental literature reports in which they were used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gowri Nayar ◽  
Edward E. Seabolt ◽  
Mark Kunitomi ◽  
Akshay Agarwal ◽  
Kristen L. Beck ◽  
...  

AbstractRapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.


2021 ◽  
Author(s):  
Gowri Nayar ◽  
Edward Seabolt ◽  
Mark Kunitomi ◽  
Akshay Agarwal ◽  
Kristen Beck ◽  
...  

Abstract Rapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dina M. Ali ◽  
Lamiaa G. Zake ◽  
Nevine K. El Kady

Background. The current global pandemic of COVID-19 is considered a public health emergency. The diagnosis of COVID-19 depends on detection of the viral nucleic acid by real time reverse transcription polymerase chain reaction (RT-PCR). However, false-negative RT-PCR tests are reported and could hinder the control of the pandemic. Chest computed tomography could achieve a more reliable diagnosis and represent a complementary diagnostic tool. Aim. To perform a meta-analysis and systematic review to find out the role of chest computed tomography versus RT-PCR for precise diagnosis of COVID-19 infection. Methods. We searched three electronic databases (PubMed, ScienceDirect, and Scopus) from April 1 to April 20, 2020, to find out articles including the accuracy of chest computed tomography scan versus RT-PCR for diagnosis of SARS-CoV-2 infection. Observational studies, case series, and case reports were included. Results. A total of 238 articles were retrieved from the search strategy. Following screening, 39 articles were chosen for full text assessment and finally 35 articles were included for qualitative and quantitative analysis. Chest computed tomography showed a wide range of sensitivity varied from 12%–100%. Conclusion. Chest computed tomography is playing a key role for diagnosis and detection of COVID-19 infection. Computed tomography image findings may precede the initially positive RT-PCR assay.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

1995 ◽  
Vol 31 (5-6) ◽  
pp. 371-374 ◽  
Author(s):  
R. Gajardo ◽  
R. M. Pintó ◽  
A. Bosch

A reverse transcription polymerase chain reaction (RT-PCR) assay is described that has been developed for the detection and serotyping of group A rotavirus in stool specimens and concentrated and non-concentrated sewage specimens.


2020 ◽  
Author(s):  
Thomas Tschoellitsch ◽  
Martin Dünser ◽  
Carl Böck ◽  
Karin Schwarzbauer ◽  
Jens Meier

Abstract Objective The diagnosis of COVID-19 is based on the detection of SARS-CoV-2 in respiratory secretions, blood, or stool. Currently, reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to test for SARS-CoV-2. Methods In this retrospective cohort analysis, we evaluated whether machine learning could exclude SARS-CoV-2 infection using routinely available laboratory values. A Random Forests algorithm with 1353 unique features was trained to predict the RT-PCR results. Results Out of 12,848 patients undergoing SARS-CoV-2 testing, routine blood tests were simultaneously performed in 1528 patients. The machine learning model could predict SARS-CoV-2 test results with an accuracy of 86% and an area under the receiver operating characteristic curve of 0.90. Conclusion Machine learning methods can reliably predict a negative SARS-CoV-2 RT-PCR test result using standard blood tests.


Sign in / Sign up

Export Citation Format

Share Document