Application of Heat Transfer Regularities to Control Wind Rate Among Blast Furnace Tuyeres

Author(s):  
Y. Polinov ◽  
O. Onorin ◽  
A. Gordon ◽  
A. Spirin ◽  
N. Pavlov
2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


2007 ◽  
Vol 34 (5) ◽  
pp. 415-421 ◽  
Author(s):  
Z. Qian ◽  
Z.-H. Du ◽  
L.-J. Wu

1985 ◽  
Vol 71 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Jiro OHNO ◽  
Masaharu TACHIMORI ◽  
Masakazu NAKAMURA ◽  
Yukiaki HARA

2007 ◽  
Vol 129 (12) ◽  
pp. 1729-1731 ◽  
Author(s):  
Yu Zhang ◽  
Rohit Deshpande ◽  
D. Huang ◽  
Pinakin Chaubal ◽  
Chenn Q. Zhou

The wear of a blast furnace hearth and the hearth inner profile are highly dependent on the liquid iron flow pattern, refractory temperatures, and temperature distributions at the hot face. In this paper, the detailed methodology is presented along with the examples of hearth inner profile predictions. A new methodology along with new algorithms is proposed to calculate the hearth erosion and its inner profile. The methodology is to estimate the hearth primary inner profile based on 1D heat transfer and to compute the hot-face temperature using the 3D CFD hearth model according to the 1D preestimated and reestimated profiles. After the hot-face temperatures are converged, the hot-face positions are refined by a new algorithm, which is based on the difference between the calculated and measured results, for the 3D computational fluid dynamics (CFD) hearth model further computations, until the calculated temperatures well agree with those measured by the thermocouples.


Sign in / Sign up

Export Citation Format

Share Document