Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern Hemisphere Sites, 1962-1993

Author(s):  
R. Nydall, ◽  
K. Lovseth,
Geology ◽  
2013 ◽  
Vol 41 (8) ◽  
pp. 831-834 ◽  
Author(s):  
C. Mayr ◽  
A. Lücke ◽  
S. Wagner ◽  
H. Wissel ◽  
C. Ohlendorf ◽  
...  

2016 ◽  
Author(s):  
Pearse J. Buchanan ◽  
Richard J. Matear ◽  
Andrew Lenton ◽  
Steven J. Phipps ◽  
Zanna Chase ◽  
...  

Abstract. The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover broadly consistent with proxy reconstructions. Within the ocean, a significant reorganisation of the large-scale circulation and biogeochemical fields occurs. The LGM simulation stores an additional 322  Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation, particularly due to a strengthening in Antarctic Bottom Water circulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (> 100 mmol O2 m−3) and deepening of the aragonite saturation depth (> 2000 m deeper) at odds with proxy reconstructions. Hence, physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80–100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 00 Pg C). These modifications also go some way to reconcile simulated export production, aragonite saturation state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating changes in ocean biogeochemistry as an essential driver of the climate system.


2020 ◽  
Author(s):  
Yurui Zhang ◽  
Thierry Huck ◽  
Camille Lique ◽  
Yannick Donnadieu ◽  
Jean-Baptiste Ladant ◽  
...  

Abstract. The early Eocene (~ 55 Ma) is the warmest period, and most likely characterized by the highest atmospheric CO2 concentrations, of the Cenozoic era. Here, we analyze simulations of the early Eocene performed with the IPSL-CM5A2 coupled climate model set up with paleogeographic reconstructions of this period from the DeepMIP project, with different levels of atmospheric CO2, and compare them with simulations of the modern conditions. This allows us to explore the changes of the ocean circulation and the resulting ocean meridional heat transport. At a CO2 level of 840 ppm, the Early Eocene simulation is characterized by a strong abyssal overturning circulation in the Southern Hemisphere (40 Sv at 60º S), fed by deep water formation in the three sectors of the Southern Ocean. Deep convection in the Southern Ocean is favored by the closed Drake and Tasmanian passages, which provide western boundaries for the build-up of strong subpolar gyres in the Weddell and Ross seas, in the middle of which convection develops. The strong overturning circulation, associated with the subpolar gyres, sustains the poleward advection of saline subtropical water to the convective region in the Southern Ocean, maintaining deep-water formation. This salt-advection feedback mechanism works similarly in the present-day North Atlantic overturning circulation. The strong abyssal overturning circulation in the 55 Ma simulations primarily results in an enhanced poleward ocean heat transport by 0.3–0.7 PW in the Southern Hemisphere compared to modern conditions, reaching 1.7 PW southward at 20° S, and contributing to maintain the Southern Ocean and Antarctica warm in the Eocene. Simulations with different atmospheric CO2 levels show that the ocean circulation and heat transport are relatively insensitive to CO2-doubling.


Science ◽  
2007 ◽  
Vol 318 (5849) ◽  
pp. 435-438 ◽  
Author(s):  
L. Stott ◽  
A. Timmermann ◽  
R. Thunell

2009 ◽  
Vol 5 (4) ◽  
pp. 695-706 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Menviel ◽  
P. Spence ◽  
J. Yu ◽  
M. A. Chamberlain ◽  
R. J. Matear ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 1263-1283 ◽  
Author(s):  
Yurui Zhang ◽  
Thierry Huck ◽  
Camille Lique ◽  
Yannick Donnadieu ◽  
Jean-Baptiste Ladant ◽  
...  

Abstract. The early Eocene (∼55 Ma) was the warmest period of the Cenozoic and was most likely characterized by extremely high atmospheric CO2 concentrations. Here, we analyze simulations of the early Eocene performed with the IPSL-CM5A2 Earth system model, set up with paleogeographic reconstructions of this period from the DeepMIP project and with different levels of atmospheric CO2. When compared with proxy-based reconstructions, the simulations reasonably capture both the reconstructed amplitude and pattern of early Eocene sea surface temperature. A comparison with simulations of modern conditions allows us to explore the changes in ocean circulation and the resulting ocean meridional heat transport. At a CO2 level of 840 ppm, the early Eocene simulation is characterized by a strong abyssal overturning circulation in the Southern Hemisphere (40 Sv at 60∘ S), fed by deepwater formation in the three sectors of the Southern Ocean. Deep convection in the Southern Ocean is favored by the closed Drake and Tasmanian passages, which provide western boundaries for the buildup of strong subpolar gyres in the Weddell and Ross seas, in the middle of which convection develops. The strong overturning circulation, associated with subpolar gyres, sustains the poleward advection of saline subtropical water to the convective regions in the Southern Ocean, thereby maintaining deepwater formation. This salt–advection feedback mechanism is akin to that responsible for the present-day North Atlantic overturning circulation. The strong abyssal overturning circulation in the 55 Ma simulations primarily results in an enhanced poleward ocean heat transport by 0.3–0.7 PW in the Southern Hemisphere compared to modern conditions, reaching 1.7 PW southward at 20∘ S, and contributes to keeping the Southern Ocean and Antarctica warm in the Eocene. Simulations with different atmospheric CO2 levels show that ocean circulation and heat transport are relatively insensitive to CO2 doubling.


2008 ◽  
Vol 9 (2) ◽  
pp. 41-44 ◽  
Author(s):  
Yoshimune Yamada ◽  
Kaeko Yasuike ◽  
Kazuhisa Komura

Sign in / Sign up

Export Citation Format

Share Document