Hilbert \(C^{*}\)-modules in which all relatively strictly closed submodules are complemented

2021 ◽  
Vol 56 (2) ◽  
pp. 343-374
Author(s):  
Boris Guljaš ◽  

We give the characterization and description of all full Hilbert modules and associated algebras having the property that each relatively strictly closed submodule is orthogonally complemented. A strict topology is determined by an essential closed two-sided ideal in the associated algebra and a related ideal submodule. It is shown that these are some modules over hereditary algebras containing the essential ideal isomorphic to the algebra of (not necessarily all) compact operators on a Hilbert space. The characterization and description of that broader class of Hilbert modules and their associated algebras is given. As auxiliary results we give properties of strict and relatively strict submodule closures, the characterization of orthogonal closedness and orthogonal complementing property for single submodules, relation of relative strict topology and projections, properties of outer direct sums with respect to the ideals in \(\ell_\infty\) and isomorphisms of Hilbert modules, and we prove some properties of hereditary algebras and associated hereditary modules with respect to the multiplier algebras, multiplier Hilbert modules, corona algebras and corona modules.

Author(s):  
Tirthankar Bhattacharyya ◽  
B Krishna Das ◽  
Haripada Sau

Abstract The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results. (1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules. (2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators. (3) Theorem III gives several characterizations of an analytic Toeplitz operator. (4) Theorem IV characterizes asymptotic Toeplitz operators. (5) Theorem V is a commutant lifting theorem. (6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.


1986 ◽  
Vol 24 (1-3) ◽  
pp. 53-69 ◽  
Author(s):  
Mladen Bestvina ◽  
Philip Bowers ◽  
Jerzy Mogilsky ◽  
John Walsh
Keyword(s):  

2017 ◽  
Vol 30 (3) ◽  
pp. 227
Author(s):  
Rana Noori Majeed Mohammed

  Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called  s- closed submodule denoted by  D ≤sc W, if D has   no  proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In  this  paper,  we study  modules which satisfies  the ascending chain  conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.


2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


1984 ◽  
Vol 25 (1) ◽  
pp. 99-101 ◽  
Author(s):  
Alan Lambert

In this note a characterization of subnormality of operators on Hilbert space is given. The characterization is in terms of a sequence of polynomials in the operator and its adjoint reminiscent of the binomial expansion in commutative algebras. As such no external Hilbert spaces are needed, nor is it necessary to introduce forms dependent on arbitrary sequences of vectors from the Hilbert space.


Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 47 ◽  
Author(s):  
Davor Dragičević ◽  
Ciprian Preda

For linear skew-product three-parameter semiflows with discrete time acting on an arbitrary Hilbert space, we obtain a complete characterization of exponential stability in terms of the existence of appropriate Lyapunov functions. As a nontrivial application of our work, we prove that the notion of an exponential stability persists under sufficiently small linear perturbations.


1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


1985 ◽  
Vol 31 (1) ◽  
pp. 137-144 ◽  
Author(s):  
J. Vukman

In this paper some results concerning the Cauchy functional equation, that is the functional equation f(x+y) = f(x) + f(y) in complex hermitian Banach *-algebras with an identity element are presented. As an application a generalization of Kurepa's extension of the Jordan-Neumann characterization of pre-Hilbert space is obtained.


1999 ◽  
Vol 22 (4) ◽  
pp. 885-888
Author(s):  
Parfeny P. Saworotnow

CommutativeH*-algebras are characterized without postulating the existence of Hilbert space structure.


2018 ◽  
Vol 5 (1) ◽  
pp. 42-49
Author(s):  
Fernanda Botelho ◽  
T.S.S.R.K. Rao

Abstract This paper concerns the analysis of the structure of bi-contractive projections on spaces of vector valued continuous functions and presents results that extend the characterization of bi-contractive projections given by the first author. It also includes a partial generalization of these results to affine and vector valued continuous functions from a Choquet simplex into a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document