Relationship of Glomerular Basement Membrane Alterations to Epithelial Cell Structure and Clinical Parameters in Alport Syndrome

2010 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Hye Jin Eom ◽  
Seung Jin Hong ◽  
Jae Seung Lee ◽  
Hyeon Joo Jeong ◽  
Youngki Kim ◽  
...  
2015 ◽  
Vol 84 (3) ◽  
pp. 201-204
Author(s):  
Jakub Żurawski

Initially, the thin glomerular basement membrane disease was called “a gentle and curable hemorrhagic nephritis”. The thin basement membrane disease has been finally characterized at the beginning of 1970s. This is when the connection between previously clinically described gentle microhematuria and significant thinning of glomerular basement membrane discovered during examination under the electron-microscope has been established. Ultimately, the disease has been described as a condition characterized with a diverse clinical course, usually mild, but sometimes progressive. It is a family conditioned disease, but it also appears sporadically and concerns at least 1% of the population. It has also been stated that it is one of the most frequent renal diseases, enumerated directly after changes caused by infections, hypertension and renal lithiasis. This particular disease is diagnosed more often than IgA nephropathy and Alport syndrome, which are also associated with haematuria or microhematuria.


2016 ◽  
Vol 311 (1) ◽  
pp. F120-F130 ◽  
Author(s):  
George Jarad ◽  
Russell H. Knutsen ◽  
Robert P. Mecham ◽  
Jeffrey H. Miner

Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout ( Alb−/−) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb+/− mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout ( Col4a3−/−) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3−/−; Alb−/− mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3−/−; Alb+/+ and Col4a3−/−; Alb+/− mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135648 ◽  
Author(s):  
Haiyan Wang ◽  
Zhihui Yue ◽  
Jinlang Wu ◽  
Ting Liu ◽  
Ying Mo ◽  
...  

2018 ◽  
Vol 71-72 ◽  
pp. 250-261 ◽  
Author(s):  
Steven D. Funk ◽  
Meei-Hua Lin ◽  
Jeffrey H. Miner

2001 ◽  
Vol 12 (4) ◽  
pp. 758-766 ◽  
Author(s):  
UMA KRISHNAMURTI ◽  
BING ZHOU ◽  
WEI-WEI FAN ◽  
EFFIE TSILIBARY ◽  
ELIZABETH WAYNER ◽  
...  

Abstract. Puromycin aminonucleoside (PAN)-induced nephrosis is a well-described model of human idiopathic nephrotic syndrome, but the mechanism of PAN's effect is not completely understood. Because PAN injection into rats results in retraction of glomerular epithelial cell foot processes and glomerular epithelial cell detachment, it was hypothesized that PAN might alter the contacts between these cells and the glomerular basement membrane. The major integrin expressed by glomerular epithelial cells is α3β1, which mediates attachment of these cells to extracellular matrix proteins including type IV collagen. T-SV 40 immortalized human glomerular epithelial cells were used to study PAN's effects on α3β1 expression, as well as that of podocalyxin and the slit diaphragm component ZO-1. Glomerular epithelial cells were seeded into plastic flasks and allowed to attach and proliferate for 48 h. The cells were then incubated for another 48 h in media containing 0, 0.5, or 5.0 μg/ml PAN. PAN exposure resulted in dose-dependent decreases in α3 and β1 expression, both at the protein level and at the mRNA level. This was accompanied by a significant decrease in the adhesion of glomerular epithelial cells to type IV collagen. PAN did not affect ZO-1 protein expression. Treatment with PAN increased the expression of podocalyxin at the protein and mRNA levels. Reduced glomerular epithelial cell expression of α3β1 integrins and impaired adhesion to type IV collagen may contribute to the glomerular epithelial cell detachment from glomerular basement membrane seen in the PAN nephrosis model.


Sign in / Sign up

Export Citation Format

Share Document