scholarly journals Adaptive evolution of Saccharomyces cerevisiae and its application in co-culture with Saccharomyces kudriavzevii in the production of fermented Myrciaria jaboticaba

2021 ◽  
Vol 10 (2) ◽  
pp. e52010212525
Author(s):  
Julie Evany dos Santos ◽  
Tatianne Ferreira de Oliveira ◽  
Fernanda Ferreira Freitas ◽  
Maria Carolina Santos Silva ◽  
Gabriel Luis Castiglioni

The objective of this work was to apply the adaptive evolution technique using the Saccharomyces cerevisiae T73 strain to increase its tolerance to ethanol and to evaluate its behavior in co-culture with Saccharomyces kudriavzevii CR85 in the production of fermented Myrciaria jaboticaba. Fermentations were carried out at 25 °C for 186 hours under agitation of 150 rpm, according to a central. The consumption of sugar, ethanol, glycerol and acetic acid formed during the fermentation process was evaluated. The results showed that there is an improvement in ethanol tolerance in S. cerevisiae T73 when submitted to the evolution process. Its use for the production of fermentation of Myrciaria jaboticaba in co-culture shows that the highest yield was observed when 0.0372 g.L-1 and 0.0648 g.L-1 of S. cerevisiae T73 PE (that underwent evolution) and CR85 respectively. These results differed statistically from the experiments using the original T73 strain. Regarding the production of ethanol in co-culture there is a significant increase when using the evolved T73 strain, showing possible changes in the primary metabolism of the ethanol production process, due to the changes promoted during the adaptive evolution of the T73 strain. The results show the potential of the new strain for the production of fermented with higher concentrations of sugars in the must.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuo Pan ◽  
Bin Jia ◽  
Hong Liu ◽  
Zhen Wang ◽  
Meng-Zhe Chai ◽  
...  

EKUILIBIUM ◽  
2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Margono Margono

<p><strong><em>Abstract:</em></strong> <em>Renewable energy necesity have promote research on ethanol production technology. Ethanol is the potential renewable energy substituting gasoline. However, the conventional problem is high price of the ethanol. The objective of this research was to test the performance of alternative process in producing ethanol, i.e. combination of fermentation process with ethanol stripping in trickle bed bioreactor. The experimental was using Saccharomyces cerevisiae FNCC 3012 and sugarcane bagass as bed particle. It was devided into 2 process steps of biofilm development and ethanol production. Biofilm development was done by circulating medium in bioreactor aerobically. Duration of the biofilm development was 24 hours and followed by ethanol production step which was combinating anaerobic fermentation and stripping process using nitrogen. Production process was conducted for 36 hours lifetime. This method resulted biofilm developing in fermentation medium, not on baggas surfaces. Consequently, ethanol production happened in circulated fermentation medium. The productivity of this method of ethanol production process was not better than the conventional process. Neverherless, the experimental showed that the product stripping and fermentation could be done simultaneously. The stripping process increased ethanol product concentration up to 25% higher than in the broth</em>.</p><p> <strong><em>Keywords:</em></strong> <em>ethanol, Saccharomyces cerevisiae FNCC 3012, trickle bed bioreactor, stripping, biofilm</em></p>


2020 ◽  
Vol 42 ◽  
pp. e43427
Author(s):  
Mayara Vieira Santos ◽  
Adriana Régia Marques Souza ◽  
Maria Carolina Santos Silva ◽  
Gabriel Luis Castiglioni

In the Brazilian industries, the inoculum used throughout the harvest of ethanol production consists of a combination of two or more yeast strains. The combination of yeasts may influence in the metabolic pathways of microorganisms and increase the yields and production rates of some compounds. In biotechnological processes with co-culture, one microorganism can prevail over the other. Therefore, the knowledge about how the population dynamics occurs during fermentation allows modifications in the process in order to obtain higher yields and to achieve greater fermentative efficiency. The aim of this study was to investigate the fermentation with synthetic sugar cane broth in co-culture of Saccharomyces cerevisiae strains CAT-1 and PE-2 followed by molecular fermentation monitoring. The concentration of biomass, ethanol, glycerol, acetic acid and residual sucrose were monitored to verify the influence of different combinations during the fermentation. The mixture of CAT-1 and PE-2 presented the highest ethanol production, with higher performance of fermentative parameters than pure cultures


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105046-105055 ◽  
Author(s):  
Ze Chen ◽  
Zhou Zheng ◽  
Chenfeng Yi ◽  
Fenglian Wang ◽  
Yuanpu Niu ◽  
...  

During the batch bioethanol fermentation process, although Saccharomyces cerevisiae cells are challenged by accumulated ethanol, our previous work showed that the ethanol tolerance of S. cerevisiae increased as fermentation time increased.


Author(s):  
Minal Deolekar ◽  
Trupti Shende

On account of the increasing demand for valuable herbal products, an attempt was made to produce a functional fermented Ethanol from Amla. This study investigates the potential of ethanol production from Amla (Emblica officinalis Gaertn). In the present study, Amla juice was extracted, filtered, fermented and it shows a suitable medium for the growth of Saccharomyces cerevisiae on yeast peptone dextrose medium for the production of ethanol. Ethanol was separated by fractional distillation and then estimated at 4, 6, 8 and 10 days of the fermentation process by iodometric method for 30oC. The ethanol percentage estimated by the iodometric titration method was high on the 10th day, and it was found to be 1.63 gm% compared to all days. So, the outcome of this study reveals that amla fruit can be used as a crucial constituent for the yield of ethanol with a higher commercial value.


Author(s):  
Minal Deolekar ◽  
Trupti Shende

On account of the increasing demand for valuable herbal products, an attempt was made to produce a functional fermented Ethanol from Amla. This study investigates the potential of ethanol production from Amla (Emblica officinalis Gaertn). In the present study, Amla juice was extracted, filtered, fermented and it shows a suitable medium for the growth of Saccharomyces cerevisiae on yeast peptone dextrose medium for the production of ethanol. Ethanol was separated by fractional distillation and then estimated at 4, 6, 8 and 10 days of the fermentation process by iodometric method for 30oC. The ethanol percentage estimated by the iodometric titration method was high on the 10th day, and it was found to be 1.63 gm% compared to all days. So, the outcome of this study reveals that amla fruit can be used as a crucial constituent for the yield of ethanol with a higher commercial value.


Sign in / Sign up

Export Citation Format

Share Document