scholarly journals Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment

2004 ◽  
Vol 36 ◽  
pp. 271-284 ◽  
Author(s):  
F Mermillod-Blondin ◽  
R Rosenberg ◽  
F François-Carcaillet ◽  
K Norling ◽  
L Mauclaire
2017 ◽  
Vol 8 ◽  
Author(s):  
Taha Soliman ◽  
James D. Reimer ◽  
Sung-Yin Yang ◽  
Alejandro Villar-Briones ◽  
Michael C. Roy ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
David A. Aromokeye ◽  
Tim Richter-Heitmann ◽  
Oluwatobi E. Oni ◽  
Ajinkya Kulkarni ◽  
Xiuran Yin ◽  
...  

2012 ◽  
Vol 7 (3) ◽  
pp. 555-567 ◽  
Author(s):  
Katsunori Yanagawa ◽  
Yuki Morono ◽  
Dirk de Beer ◽  
Matthias Haeckel ◽  
Michinari Sunamura ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Maturana-Martínez ◽  
Camila Fernández ◽  
Humberto E. González ◽  
Pierre E. Galand

Microorganisms play a crucial role in biogeochemical processes affecting the primary production and biogeochemical cycles of the ocean. In subpolar areas, the increment of the water temperature induced by climate change could lead to changes in the structure and activity of planktonic microbial communities. To understand how the structure of the microbial community in Chilean Patagonian fjords could be affected by climate change, we analyzed the composition of the prokaryotic community (bacteria-archaea) in two fjords (Pia and Yendegaia) with contrasting morphological and hydrological features. We targeted both the standing stock (16S rRNA genes) and the active fraction (16S rRNA transcripts) of the microbial communities during two consecutive austral winters. Our results showed that in both fjords, the active community had higher diversity and stronger biogeographic patterns when compared to the standing stock. Members of the Alpha-, Gamma-, and Deltaproteobacteria followed by archaea from the Marine Group I (Thaumarchaeota) dominated the active communities in both fjords. However, in Pia fjord, which has a marine-terminating glacier, the composition of the microbial community was directly influenced by the freshwater discharges from the adjacent glacier, and indirectly by a possible upwelling phenomenon that could bring deep sea bacteria such as SAR202 to the surface layer. In turn, in the Yendegaia, which has a land-terminating glacier, microbial communities were more similar to the ones described in oceanic waters. Furthermore, in Yendegaia fjord, inter-annual differences in the taxonomic composition and diversity of the microbial community were observed. In conclusion, Yendegaia fjord, without glacier calving, represents a fjord type that will likely be more common under future climate scenarios. Our results showing distinct Yendegaia communities, with for example more potential nitrogen-fixing microorganisms (Planctomycetes), indicate that as a result of climate change, changing planktonic communities could potentially impact biogeochemical processes and nutrient sources in subantarctic fjords.


2013 ◽  
Vol 10 (4) ◽  
pp. 7521-7548 ◽  
Author(s):  
S. A. Quideau ◽  
M. J. B. Swallow ◽  
C. E. Prescott ◽  
S. J. Grayston ◽  
S.-W. Oh

Abstract. Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.


Sign in / Sign up

Export Citation Format

Share Document