Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers

2015 ◽  
Vol 518 ◽  
pp. 239-254 ◽  
Author(s):  
TJ Rowell ◽  
RS Nemeth ◽  
MT Schärer ◽  
RS Appeldoorn
2009 ◽  
Vol 67 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Nicola J. Downey ◽  
Michael J. Roberts ◽  
Dan Baird

Abstract Downey, N. J., Roberts, M. J., and Baird, D. 2010. An investigation of the spawning behaviour of the chokka squid Loligo reynaudii and the potential effects of temperature using acoustic telemetry. – ICES Journal of Marine Science, 67: 231–243. Spawning aggregations of chokka squid are influenced by environmental conditions. Acoustic telemetry was used to monitor the behaviour of spawning squid in relation to environmental variability. During the November squid-fishery closed seasons of 2003–2006, hexagonal VR2 receiver arrays were moored on and around active spawning aggregations in Kromme Bay, South Africa. In all, 45 squid were tagged (V9P-6L-S256 transmitters) and released within these arrays. Three presence–absence behaviours were identified: (i) arrival on the spawning site at dawn and departure after dusk, (ii) continuous presence for a number of days, and (iii) presence interrupted by frequent but short periods of absence. Movement between spawning sites was both diurnal and nocturnal. Squid presence at the monitored sites increased after dawn and decreased towards and after dusk. Occasionally, a core aggregation of squid remained on the spawning sites at night. Temperature data at the sites indicated occasional upwelling, and although the role of temperature in the spawning process is not well understood, data suggest that it is linked to the continuation and or interruption of spawning after an aggregation has formed. The initial formation of spawning aggregations appears to be triggered by upwelling events.


2018 ◽  
Vol 75 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Nicholas S. Johnson ◽  
Dennis Higgs ◽  
Thomas R. Binder ◽  
J. Ellen Marsden ◽  
Tyler Buchinger ◽  
...  

Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings with behavioral data collected using acoustic telemetry and video. These sounds were named “growls” and “snaps” and were heard on lake trout spawning reefs, but not on a nonspawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the prespawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors: growls when males were quivering and parallel swimming and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid) provides rare evidence for spawning-related sound production by a salmonid or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.


2016 ◽  
Author(s):  
Eric W Montie ◽  
Matt Hoover ◽  
Chris Kehrer ◽  
Justin Yost ◽  
Karl Brenkert ◽  
...  

Background: Fish sound production is widespread throughout many families. Agonistic and courtship behaviors are the most common reasons for fish sound production. Yet, there is still some debate on how sound production and spawning are correlated in many soniferous fish species. In the present study, our aim was to determine if a quantitative relationship exists between calling and egg deposition in captive spotted seatrout (Cynoscion nebulosus). This type of data is essential if scientists and managers plan to use acoustic metrics to identify spawning aggregations over large spatial scales and monitor reproductive activity over annual and decadal timeframes.Methods: Wild caught spotted seatrout were held in three laboratory tanks equipped with long-term acoustic loggers (i.e., DSG-Oceans) to record underwater sound throughout an entire, simulated reproductive season. Acoustic monitoring occurred from April 13 to December 19, 2012 for Tank 1 and from April 13 to November 21, 2012 for Tanks 2 and 3. DSG-Oceans were scheduled to record sound for 2 min every 20 min. We enumerated the number of calls, calculated the received sound pressure level (SPL in dB re 1 µPa; between 50 and 2000 Hz) of each 2 min ‘wav file’, and counted the number of eggs every morning in each tank.Results: Spotted seatrout produced three distinct call types characterized as “drums”, “grunts”, and “staccatos”. Spotted seatrout calling increased as the light cycle shifted from 13.5 to 14.5 h of light, and the temperature increased to 27.7oC. Calling began to decrease once the temperature fell below 27.7 oC, and the light cycle shifted to 12 h of light. These captive settings are similar to the amount of daylight and water temperatures observed during the summer, which is the primary spawning period of spotted seatrout. Spotted seatrout exhibited daily patterns of calling. Sound production began once the lights turned off, and calling reached maximum activity approximately 3 h later. Spawning occurred only on evenings in which spotted seatrout were calling. Significantly more calling and higher mean SPLs occurred on evenings in which spawning occurred as compared to evenings in which spawning did not occur. Spawning was more productive when spotted seatrout produced more calls. For all tanks, more calling and higher SPLs were associated with more eggs released by females.Discussion: The fact that more calling and higher SPLs were associated with spawns that were more productive indicates that acoustic metrics can provide quantitative information on spotted seatrout spawning in the wild. These findings will help us to identify spawning aggregations over large spatial scales and monitor the effects of noise pollution, water quality, and climatic changes on reproductive activity using acoustic technology.


2010 ◽  
Vol 10 (2) ◽  
pp. 149-154 ◽  
Author(s):  
D Mann ◽  
J Locascio ◽  
M Schärer ◽  
M Nemeth ◽  
R Appeldoorn

2019 ◽  
Vol 76 (7) ◽  
pp. 1171-1185 ◽  
Author(s):  
B.M. Crisafulli ◽  
D.V. Fairclough ◽  
I.S. Keay ◽  
P. Lewis ◽  
J.R. How ◽  
...  

Understanding migration dynamics of fishes that aggregate-spawn is critical if spatiotemporal closures to fishing are expected to protect them. Concern over fishing of Chrysophrys auratus spawning aggregations in embayments near a west Australian city led to an annual 4-month spatial fishing closure. However, the extent to which it protects fish migrating to and from aggregations is unclear. Acoustic telemetry demonstrated a bimodal pattern of entry to and departure from the main embayment via only one of several pathways. Among years, 33%–56% of fish occurred in the pathway prior to the closure, but most left before it ceased. Fish were detected within the closure in multiple but not always consecutive years. Variation in migration timing and aggregation philopatry may alter capture risk, but pre- and postspawning migratory fish are fished in the main pathway and adjacent reefs, which would presumably impact spawning aggregation biomass. Assessment of this would assist in understanding whether expansion of the closure’s spatial and temporal limits is necessary to ensure spawning biomass or whether current management is sufficient.


2016 ◽  
Author(s):  
Eric W Montie ◽  
Matt Hoover ◽  
Chris Kehrer ◽  
Justin Yost ◽  
Karl Brenkert ◽  
...  

Background: Fish sound production is widespread throughout many families. Agonistic and courtship behaviors are the most common reasons for fish sound production. Yet, there is still some debate on how sound production and spawning are correlated in many soniferous fish species. In the present study, our aim was to determine if a quantitative relationship exists between calling and egg deposition in captive spotted seatrout (Cynoscion nebulosus). This type of data is essential if scientists and managers plan to use acoustic metrics to identify spawning aggregations over large spatial scales and monitor reproductive activity over annual and decadal timeframes.Methods: Wild caught spotted seatrout were held in three laboratory tanks equipped with long-term acoustic loggers (i.e., DSG-Oceans) to record underwater sound throughout an entire, simulated reproductive season. Acoustic monitoring occurred from April 13 to December 19, 2012 for Tank 1 and from April 13 to November 21, 2012 for Tanks 2 and 3. DSG-Oceans were scheduled to record sound for 2 min every 20 min. We enumerated the number of calls, calculated the received sound pressure level (SPL in dB re 1 µPa; between 50 and 2000 Hz) of each 2 min ‘wav file’, and counted the number of eggs every morning in each tank.Results: Spotted seatrout produced three distinct call types characterized as “drums”, “grunts”, and “staccatos”. Spotted seatrout calling increased as the light cycle shifted from 13.5 to 14.5 h of light, and the temperature increased to 27.7oC. Calling began to decrease once the temperature fell below 27.7 oC, and the light cycle shifted to 12 h of light. These captive settings are similar to the amount of daylight and water temperatures observed during the summer, which is the primary spawning period of spotted seatrout. Spotted seatrout exhibited daily patterns of calling. Sound production began once the lights turned off, and calling reached maximum activity approximately 3 h later. Spawning occurred only on evenings in which spotted seatrout were calling. Significantly more calling and higher mean SPLs occurred on evenings in which spawning occurred as compared to evenings in which spawning did not occur. Spawning was more productive when spotted seatrout produced more calls. For all tanks, more calling and higher SPLs were associated with more eggs released by females.Discussion: The fact that more calling and higher SPLs were associated with spawns that were more productive indicates that acoustic metrics can provide quantitative information on spotted seatrout spawning in the wild. These findings will help us to identify spawning aggregations over large spatial scales and monitor the effects of noise pollution, water quality, and climatic changes on reproductive activity using acoustic technology.


2020 ◽  
Vol 63 (11) ◽  
pp. 3714-3726
Author(s):  
Sherine R. Tambyraja ◽  
Kelly Farquharson ◽  
Laura Justice

Purpose The purpose of this study was to determine the extent to which school-age children with speech sound disorder (SSD) exhibit concomitant reading difficulties and examine the extent to which phonological processing and speech production abilities are associated with increased likelihood of reading risks. Method Data were obtained from 120 kindergarten, first-grade, and second-grade children who were in receipt of school-based speech therapy services. Children were categorized as being “at risk” for reading difficulties if standardized scores on a word decoding measure were 1 SD or more from the mean. The selected predictors of reading risk included children's rapid automatized naming ability, phonological awareness (PA), and accuracy of speech sound production. Results Descriptive results indicated that just over 25% of children receiving school-based speech therapy for an SSD exhibited concomitant deficits in word decoding and that those exhibiting risk at the beginning of the school year were likely to continue to be at risk at the end of the school year. Results from a hierarchical logistic regression suggested that, after accounting for children's age, general language abilities, and socioeconomic status, both PA and speech sound production abilities were significantly associated with the likelihood of being classified as at risk. Conclusions School-age children with SSD are at increased risk for reading difficulties that are likely to persist throughout an academic year. The severity of phonological deficits, reflected by PA and speech output, may be important indicators of subsequent reading problems.


Author(s):  
Julie L. Wambaugh ◽  
Lydia Kallhoff ◽  
Christina Nessler

Purpose This study was designed to examine the association of dosage and effects of Sound Production Treatment (SPT) for acquired apraxia of speech. Method Treatment logs and probe data from 20 speakers with apraxia of speech and aphasia were submitted to a retrospective analysis. The number of treatment sessions and teaching episodes was examined relative to (a) change in articulation accuracy above baseline performance, (b) mastery of production, and (c) maintenance. The impact of practice schedule (SPT-Blocked vs. SPT-Random) was also examined. Results The average number of treatment sessions conducted prior to change was 5.4 for SPT-Blocked and 3.9 for SPT-Random. The mean number of teaching episodes preceding change was 334 for SPT-Blocked and 179 for SPT-Random. Mastery occurred within an average of 13.7 sessions (1,252 teaching episodes) and 12.4 sessions (1,082 teaching episodes) for SPT-Blocked and SPT-Random, respectively. Comparisons of dosage metric values across practice schedules did not reveal substantial differences. Significant negative correlations were found between follow-up probe performance and the dosage metrics. Conclusions Only a few treatment sessions were needed to achieve initial positive changes in articulation, with mastery occurring within 12–14 sessions for the majority of participants. Earlier occurrence of change or mastery was associated with better follow-up performance. Supplemental Material https://doi.org/10.23641/asha.12592190


Sign in / Sign up

Export Citation Format

Share Document