Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand

1994 ◽  
Vol 111 ◽  
pp. 245-255 ◽  
Author(s):  
E Kristensen ◽  
GM King ◽  
M Holmer ◽  
GT Banta ◽  
MH Jensen ◽  
...  
1994 ◽  
Vol 109 ◽  
pp. 245-255 ◽  
Author(s):  
E Kristensen ◽  
GM King ◽  
M Holmer ◽  
GT Banta ◽  
MH Jensen ◽  
...  

2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


1993 ◽  
Vol 28 (2) ◽  
pp. 135-144 ◽  
Author(s):  
S. Matsui ◽  
R. Ikemoto Yamamoto ◽  
Y. Tsuchiya ◽  
B. Inanc

Using a fluidized bed reactor, experiments on glucose decomposition with and without sulfate reduction were conducted. Glucose in the reactor was mainly decomposed into lactate and ethanol. Lactate was mainly decomposed into propionate and acetate, while ethanol was decomposed into propionate, acetate, and hydrogen. Sulfate reduction was not involved in the decomposition of glucose, lactate, and ethanol, but was related to propionate and acetate decomposition. The stepwise reactions were modeled using either a Monod expression or first order reaction kinetics in respect to the reactions. The coefficients of the kinetic equations were determined experimentally. The modified Monod and first order reaction equations were effective at predicting concentrations of glucose, lactate, ethanol, propionate, acetate, and sulfate along the beight of the reactor. With sulfate reduction, propionate was decomposed into acetate, while without sulfate reduction, accumulation of propionate was observed in the reactor. Sulfate reduction accelerated propionate conversion into acetate by decreasing the hydrogen concentration.


Sign in / Sign up

Export Citation Format

Share Document