scholarly journals Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders:a two year study

1997 ◽  
Vol 150 ◽  
pp. 195-206 ◽  
Author(s):  
A Grémare ◽  
JM Amouroux ◽  
F Charles ◽  
A Dinet ◽  
C Riaux-Gobin ◽  
...  
1998 ◽  
Vol 21 (6) ◽  
pp. 783-792 ◽  
Author(s):  
Antoine Grémare ◽  
Jean-Michel Amouroux ◽  
François Charles ◽  
Laurence Medernach ◽  
Esther Jordana ◽  
...  

2017 ◽  
Vol 14 (7) ◽  
pp. 1903-1917 ◽  
Author(s):  
Jang Han Lee ◽  
Dabin Lee ◽  
Jae Joong Kang ◽  
Hui Tae Joo ◽  
Jae Hyung Lee ◽  
...  

Abstract. The biochemical composition of particulate organic matter (POM) produced through phytoplankton photosynthesis is important in determining food quality for planktonic consumers as well as the physiological conditions of phytoplankton. Major environmental factors controlling the biochemical composition were seasonally investigated in Gwangyang Bay, South Korea, which has only natural conditions (e.g., no artificial dams). Water samples for the biochemical compositions were obtained from three different light depths (100, 30, and 1 %) mainly at three sites in Gwangyang Bay from April 2012 to April 2013. Different biochemical classes (carbohydrates, CHO; proteins, PRT; and lipids, LIP) were extracted, and then the concentrations were determined by the optical density measured with a spectrophotometer. The highest and lowest PRT compositions among the three biochemical classes were found in April 2012 (58.0 %) and August 2012 (21.2 %), whereas the highest and lowest LIP compositions were found in August 2012 (49.0 %) and April 2012 (24.8 %), respectively. The CHO composition was recorded as high in January 2013 and remained above 25 % during the study period. The calorific contents of the food material (FM) ranged from 1.0 to 6.1 Kcal m−3 (annual average ± SD  =  2.8 ± 1.1 Kcal m−3). Based on a Pearson's correlation coefficient analysis, a major governing factor in the biochemical composition of POM was dissolved inorganic nitrogen loading from the river input in Gwangyang Bay. In conclusion, a relatively larger amount of FM and the higher calorific contents of POM found in this study compared to other regions reflected good nutritive conditions for sustaining productive shellfish and fish populations in Gwangyang Bay. Continuous observations are needed to monitor the marine ecosystem response to potential environmental perturbations in Gwangyang Bay.


1996 ◽  
Vol 13 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Antonio Pusceddu ◽  
Emilio Serra ◽  
Ornella Sanna ◽  
Mauro Fabiano

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2355
Author(s):  
Bo Kim ◽  
Jinyoung Jung ◽  
Youngju Lee ◽  
Kyoung-Ho Cho ◽  
Jong-Ku Gal ◽  
...  

Analysis of the biochemical composition (carbohydrates, CHO; proteins, PRT; lipids, LIP) of particulate organic matter (POM, mainly phytoplankton) is used to assess trophic states, and the quantity of food material is generally assessed to determine bioavailability; however, bioavailability is reduced or changed by enzymatic hydrolysis. Here, we investigated the current trophic state and bioavailability of phytoplankton in the Chukchi Sea (including the Chukchi Borderland) during the summer of 2017. Based on a cluster analysis, our 12 stations were divided into three groups: the southern, middle, and northern parts of the Chukchi Sea. A principal component analysis (PCA) revealed that relatively nutrient-rich and high-temperature waters in the southern part of the Chukchi Sea enhanced the microphytoplankton biomass, while picophytoplankton were linked to a high contribution of meltwater derived from sea ice melting in the northern part of the sea. The total PRT accounted for 41.8% (±7.5%) of the POM in the southern part of the sea, and this contribution was higher than those in the middle (26.5 ± 7.5%) and northern (26.5 ± 10.6%) parts, whereas the CHO accounted for more than half of the total POM in the northern parts. As determined by enzymatic hydrolysis, LIP were more rapidly mineralized in the southern part of the Chukchi Sea, whereas CHO were largely used as source of energy for higher trophic levels in the northern part of the Chukchi Sea. Specifically, the bioavailable fraction of POM in the northern part of the Chukchi Sea was higher than it was in the other parts. The findings indicate that increasing meltwater and a low nutrient supply lead to smaller cell sizes of phytoplankton and their taxa (flagellate and green algae) with more CHO and a negative effect on the total concentration of POM. However, in terms of bioavailability (food utilization), which determines the rate at which digested food is used by consumers, potentially available food could have positive effects on ecosystem functioning.


2020 ◽  
Vol 155 ◽  
pp. 104873
Author(s):  
So Hyun Ahn ◽  
KwanWoo Kim ◽  
Naeun Jo ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

2015 ◽  
Vol 6 (1/2) ◽  
Author(s):  
Antonio Pusceddu ◽  
Silvia Bianchelli ◽  
Roberto Danovaro

Bottom trawling represents nowadays one of the most severe anthropogenic disturbances at sea, and determines large impacts on benthic communities and processes. Bottom trawling determines also local sediment resuspension and the effects of the injection of large amounts of surface sediments into the water column have been repeatedly investigated. Few studies have assessed the consequences of sediment resuspension caused by bottom trawling on the quantity, biochemical composition and bioavailability of suspended organic particles and how these eventually rival those exerted by natural storms. To provide insights on this poorly addressed issue, we investigated concentrations and biochemical composition of total and enzymatically digestible pools of particulate organic matter (POM) in the Thermaikos Gulf (Mediterranean Sea) under calm sea conditions, during intensive trawling activities, and after a severe storm. We show here that sediment resuspension caused by trawling can cause large effects on POM quantity, biochemical composition and bioavailability. Both during trawling and after the storm, the relative importance of the carbohydrate pools increased (in the upper water column) and the total lipid concentrations decreased (in the intermediate and bottom layers) when compared to values measured during calm conditions. These results would suggest that bottom trawling could inject in the upper water column POM pools more refractory in nature (<em>e.g</em>., carbohydrates) than those present in calm or after-storm conditions. By contrast, we show also that the bioavailable fraction of biopolymeric C increased significantly during trawling in the upper water column of the shallowest stations and in the bottom water column layer of the deepest ones. These results provide evidence that bottom trawling can influence the overall trophic status of coastal waters, exerting effects similar or stronger than those caused by natural storms, though of variable amplitude depending on the water depth. Since bottom trawling is carried out worldwide and natural storms at sea can be frequent and intense, we claim for the need of assessing new adapting management strategies of bottom trawling in order to mitigate the synergistic impacts of anthropogenic and natural sediment resuspension on coastal biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document