scholarly journals Dynamics of atmospheric combined inorganic nitrogen utilization in the coastal waters off North Carolina

1999 ◽  
Vol 180 ◽  
pp. 65-79 ◽  
Author(s):  
C Aguilar ◽  
ML Fogel ◽  
HW Paerl
1988 ◽  
Vol 50 ◽  
pp. 147-150 ◽  
Author(s):  
SG Horrigan ◽  
A Hagstrom ◽  
I Koike ◽  
F Azam

2000 ◽  
Vol 51 (7) ◽  
pp. 703 ◽  
Author(s):  
M. J. O'Donohue ◽  
P. M. Glibert ◽  
W. C. Dennison

Water samples were collected within river mouths, at river plume sites and at well flushed ocean-influenced sites within Moreton Bay, a shallow subtropical embayment in south-eastern Queensland. Rates of inorganic nitrogen (NH+4 and NO-3) and carbon uptake were determined across temporal and spatial scales by use of 15N and 14C incorporation. Phytoplankton productivity, measured as CO2 uptake, was highest at the river mouths. Rates of NH+4 uptake exceeded rates of NO-3 uptake at all sites at all times. Relative preference indices demonstrated a consistent preference by phytoplankton for NH+4 uptake, and NH+4 uptake rates were higher at ocean-influenced sites than at river-mouth sites. Inorganic nutrient and chlorophyll a concentrations were highest at river mouths; however, the greatest NH+4 uptake occurred at the ocean-influenced sites, reflecting a greater dependence on ‘recycled’ N than on ‘new’ N. Biomass-independent NH+4 uptake increased with increasing water temperature; however, NO-3 uptake increased with decreasing water temperature, reflecting the lower temperature optimum for nitrate reductase. The range of NH+4 and NO-3 uptake rates was greater than ranges reported for other coastal waters, reflecting the strong temporal and spatial gradients within Moreton Bay. This trend of strong gradients in C and N dynamics from oligotrophic to river-influenced waters with seasonal flows is likely to exist in many tropical and subtropical coastal waters of Australia.


2014 ◽  
Vol 319 ◽  
pp. 161-168 ◽  
Author(s):  
Kevan J. Minick ◽  
Brian D. Strahm ◽  
Thomas R. Fox ◽  
Eric B. Sucre ◽  
Zakiya H. Leggett ◽  
...  

2018 ◽  
Vol 7 (7) ◽  
pp. 280 ◽  
Author(s):  
Md Alam ◽  
Mehmet Ercan ◽  
Faria Zahura ◽  
Jonathan Goodall

Many watersheds are currently experiencing streamflow and water quality related problems that are caused by excess nitrogen. Given that weather is a major driver of nitrogen transport through watersheds, the objective of this study was to predict climate change impacts on streamflow and nitrogen export. A forest and pasture dominated watershed in North Carolina Piedmont region was used as the study area. A physically-based Soil and Water Assessment Tool (SWAT) model parameterized using geospatial data layers and spatially downscaled temperature and precipitation estimates from eight different General Circulation Models (GCMs) were used for this study. While temperature change predictions are fairly consistent across the GCMs for the study watershed, there is significant variability in precipitation change predictions across the GCMs, and this leads to uncertainty in the future conditions within the watershed. However, when the downscaled GCM projections were taken as a model ensemble, the results suggest that both high and low emission scenarios would result in an average increase in streamflow of 14.1% and 12.5%, respectively, and a decrease in the inorganic nitrogen export by 12.1% and 8.5%, respectively, by the end of the century. The results also show clear seasonal patterns with streamflow and nitrogen loading both increasing in fall and winter months by 97.8% and 50.8%, respectively, and decreasing by 20.2% and 35.5%, respectively, in spring and summer months by the end of the century.


Sign in / Sign up

Export Citation Format

Share Document