scholarly journals Inorganic nitrogen utilization by assemblages of marine bacteria in sea-water culture

1988 ◽  
Vol 50 ◽  
pp. 147-150 ◽  
Author(s):  
SG Horrigan ◽  
A Hagstrom ◽  
I Koike ◽  
F Azam
1982 ◽  
Vol 28 (4) ◽  
pp. 414-424 ◽  
Author(s):  
Richard A. Laddaga ◽  
Robert A. MacLeod

Eighteen gram-negative marine bacteria and two terrestrial species, Escherichia coli and Pseudomonas aeruginosa, were examined for their sensitivity to lysis in distilled water after exposure either to a salt solution containing a sea water concentration of Mg2+ (0.05 M) or to 0.5 M NaCl. A spectrum of lytic susceptibility was observed among the marine bacteria ranging from those organisms which lysed in distilled water after exposure to the Mg2+-containing solution, through organisms which could be sensitized to lysis by washing with the NaCl solution, to organisms which failed to lyse in distilled water even after having been washed with a solution of 0.5 M NaCl. Pseudomonas aeruginosa and E. coli fell within this spectrum, the former being capable of being induced to lyse in distilled water by washing with 0.5 M NaCl, while the latter failed to lyse in distilled water after this treatment. It was thus concluded that no overall distinction could be made between marine and terrestrial bacteria on the basis of the sensitivity of the two groups of organisms to lysis in freshwater.Quite large decreases in optical density and increases in the release of ultraviolet-absorbing material took place when cells preexposed to the Mg2+-containing solution or to 0.5 M NaCl were subsequently suspended in distilled water even though in some cases no loss of cell numbers could be detected. In most cases two to three times as much K+ as Na+ and 1/10 to 1/100 as much Mg2+ was required to prevent these changes. For three of the marine bacteria and P. aeruginosa grown in a terrestrial type medium little difference in the requirements for Na+ and K+ to prevent the optical density changes was noted. For P. aeruginosa grown in a marine type medium, cells required more K+ than Na+ to prevent these changes.


1999 ◽  
Vol 1999 (1) ◽  
pp. 1059-1063
Author(s):  
J. R. Bergueiro ◽  
A. Pita ◽  
M. A. Mayol ◽  
M. Rallo ◽  
J. López-Ruiz

ABSTRACT The authors have studied the biodegradation of an Arabian Light crude oil in sterile marine water by the CUES229 marine bacteria and the BIOLEN IG30 biologic activator, both in the presence and the absence of zeolites. Two different types of zeolites, a natural one (NZ) and an artificial one (Zestek56), were used to degrade the crude in the first experiment, arising a 20% increment in the degradation in the presence of natural zeolite when compared with a similar sample without zeolites, and a 9% in the artificial zeolite. Next set of experiment were made using reactors filled with 250 g of sea water and 0.02 g of zeolite and injecting CUES 229 bacteria up to 108 cells/ml. Samples were introduced in a shaker at 110 rpm and with regulated temperature at 30-C. Time evolution of the biodegradation was deduced from gas chromatography at the time intervals 1; 7 and 15 days. Later, a similar experiment, but with BIOLEN IG30, was also made. Biodegradation of aliphatic hydrocarbons was observed –after 15 days- until the C14 fractions, using zeolites plus Biolen IG30, and until the C18 fractions, using zeolite plus CUES 229 bacteria.


2013 ◽  
Vol 316-317 ◽  
pp. 395-399
Author(s):  
Gen Hai Zhu ◽  
Jian Qian ◽  
Li Hong Chen ◽  
Mao Jin ◽  
Jing Jing Liu ◽  
...  

The 30 years’ annual variations of major nutrients dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) in Xiangshan Bay East China Sea between 1982 and 2011 were reported. The results showed that the concentrations of nitrogen and phosphorus nutrients increased year by year, consistent with the trend of nitrogen and phosphorus consumption in our country. Inorganic nitrogen was the main pollutant, then was inorganic phosphorus in Xiangshan harbor. The annual average change of DIN ranged from 0.21 to 0.76 mg∙dm-3 while DIP ranged from 0.018 to 0.054 mg∙dm-3. And the change trend of DIN and DIP was as following: winter > autumn > summer > spring. The DIN and DIP in Xiangshan horbor exceeded the standard limits greatly, the water quality in culture areas exceeded national criteria for sea water Level IV and most water qualities were inferior Level IV.


Author(s):  
Oliver Tully

Infestation of cage cultured Atlantic salmon by the external parasitic copepods Caligus elongatus (Nordmann) and Lepeophtheirus salmonis (Kröyer) is a serious cause of loss of production in the commercial sea water culture of this species. The copepods feed on the mucus, skin and blood of their hosts (Kabata, 1974; Brandal et al., 1976) causing irritation and lesions. Loss in production due to infestation by lice occurs directly by the mortality of fish from osmotic shock and indirectly from a probable reduction in growth, from secondary infections such as vibriosis (Wootten et al., 1982) or by increasing vulnerability to ultraviolet radiation damage (McArdle & Bullock, 1987).


2017 ◽  
Vol 2 (4) ◽  
pp. 67-83 ◽  
Author(s):  
L. I. Ryabushko ◽  
N. V. Pospelova ◽  
D. S. Balycheva ◽  
N. P. Kovrigina ◽  
O. A. Troshchenko ◽  
...  

In mollusk cultivation areas large amount of biomass and metabolites is accumulated. For this reason, biological monitoring in the farming areas, which includes study of microalgae as environmental quality indicators, is of considerable importance. Samples of mussels harvested from collectors at 6 m depth over the period February 2015 – March 2016 have been utilized for studying epizoon microalgae residing on mollusk shells. At the same time, sea water at depths of 0 and 6 m was sampled for determining phytoplankton and hydrochemical parameters of environment in the mussel-and-oyster farm area. Dissolved oxygen, biological oxygen demand after five days of incubation in the dark (BOD5), alkaline permanganate oxidizability, silicates, organic and inorganic forms of nitrogen and phosphorus have been quantified in the water samples using conventional methods. In the epizoon of the mussel shells, 108 taxa of microalgae of four phyla have been identified: 3 species of Сyanoprokaryota, 6 of Dinophyta, 6 of Haptophyta and 93 of Bacillariophyta. The maximum values of the species richness (26) and abundance of microalgae were observed in February (74,78·103 cells·cm-2, t = 9,7 °C) and April 2015 (62,0·103 cells·cm-2, t = 10,3 °C), as well as in January 2016 (65,1·103 cells·cm-2, t = 9,5 °C). The highest biomass was registered in August (0,272 mg·cm-2, t = 25,5 °C). The main contribution to the total abundance was made by the diatoms Tabularia fasciculata while Navicula ramosissima, and cyanobacteria were prevalent in the total biomass. In phytoplankton at the depths of 0 and 6 m, 135 taxa belonging to eight phyla have been found: 2 species of Cyanoprokaryota, 47 of Acillariophyta, 57 of Inophyta, 17 of Haptophyta, 5 of Chlorophyta, 2 of Euglenophyta, 3 of Cryptophyta and 2 of Chrysophyta. The genus Chaetoceros dominated by the number of diatoms species (18). In terms of abundance and biomass, the dinoflagellate Prorocentrum micans and haptophyte Emiliania huxleyi were dominant. The maximum abundance (370·107 cells·m-3) and biomass (7560 mg·m-3) of the phytoplankton were observed in spring and autumn. In total, 213 of microalgae taxa have been identified in the phytoplankton and mussel shell epizoon, with 30 ones being common for both. Furthermore, 26 potentially toxic species and 24 indicator species have been determined, among which 26 ones are betamesosaprobionts, the indicators of moderate level of water pollution. Thermohaline characteristics of water in the mollusk farm area did not exceed those of the long-term observations. At all horizons, the oxygen content was at the level of 93–125 % of saturation. The sea water oxidizability did not exceed the maximum permissible level established by fishery standards. The concentration of nutrients was high with a large fluctuation range, which indicates anthropogenic impact on the water area. The values of the total inorganic nitrogen-to-phosphorus and silicon-to-phosphorus ratios suggested nitrogen and silicon limitations for the microalgae community development from July to December. The mussel epizoon microalgae abundance strongly correlated with water temperature and dissolved oxygen, and a strong correlation of the biomass with inorganic phosphorus was observed, too. Moderate correlations were also found with inorganic phosphorus and organic nitrogen. For the phytoplankton, moderate correlations of abundance with hydrological and hydrochemical characteristics were identified: with nitrates in the surface layer and with temperature, dissolved oxygen, and organic nitrogen in the subsurface water layer. The phytoplankton biomass moderately correlated with the silicate concentration. The hydrological and hydrochemical structure of sea water, especially in the mollusk farming areas, affected species composition and quantitative characteristics of planktonic and benthic microalgae communities.


Sign in / Sign up

Export Citation Format

Share Document