scholarly journals Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica

2001 ◽  
Vol 215 ◽  
pp. 107-120 ◽  
Author(s):  
JM Ruiz ◽  
J Romero
2015 ◽  
Author(s):  
Stefano Acunto ◽  
Luigi Piazzi ◽  
Francesco L. Cinelli ◽  
Anna Maria De Biasi ◽  
Lorenzo Pacciardi ◽  
...  

Transplantation of seagrasses is considered a useful method to favour the recovery of degraded meadows. Hence, many projects have been carried out worldwide and a manifold of techniques have been applied. However, the choice of transplantation procedures remains a main problem to be assessed. In order to optimize efforts and to minimize risks of plants loss, the applied methodologies should take into account typology of hosting substratum, hydrodynamic conditions, depth and seagrass species. Due to their fundamental ecological role in the Mediterranean coastal system, many restoration projects aiming to preserve Posidonia oceanica meadows took place in the last decades. Several transplantation techniques have produced different results. In fact the same transplanting methodology may originate diverse results under different environmental conditions. Recently, naturalistic engineering techniques developed on land, have been used for transplantations of P. oceanica. Pilot projects concerning small surfaces were carried out between 2006 and 2010. More recently, a large-scale program (0.1 km2) was realized in 2012 at Civitavecchia (Roma, Thyrrenian Sea). The applied technique consists basically of mattresses filled with sand coupled with a net covering able to hold steady in situ the plant rhizomes. These structures have been variously modified in time to be adapted to the different type of substratum and various hydrodynamic conditions of the transplanting sites. Following the results of these transplantation experiences, we analyzed pros and cons of the techniques in order to improve the methodology. Firstly, these techniques may be considered suitable to large-scale projects allowing to minimize transplantation times. Secondly, the rhizomes may be successfully fixed to the structures; the majority of the transplanted shoots was not damaged showing a very good vegetative vitality with the production of new rhizomes, leaves and roots few months after transplanting. Finally, this procedure is flexible, as the basic technique can be modified and tailored to the various environmental conditions of the different receiving site. However, the results obtained in different areas are highly heterogeneous suggesting that a careful selection of the hosting site is a focal point. To this aim, a pilot study before the beginning of large-scale project seems mandatory, providing a fundamental support to guarantee successful results.


2015 ◽  
Author(s):  
Stefano Acunto ◽  
Luigi Piazzi ◽  
Francesco L. Cinelli ◽  
Anna Maria De Biasi ◽  
Lorenzo Pacciardi ◽  
...  

Transplantation of seagrasses is considered a useful method to favour the recovery of degraded meadows. Hence, many projects have been carried out worldwide and a manifold of techniques have been applied. However, the choice of transplantation procedures remains a main problem to be assessed. In order to optimize efforts and to minimize risks of plants loss, the applied methodologies should take into account typology of hosting substratum, hydrodynamic conditions, depth and seagrass species. Due to their fundamental ecological role in the Mediterranean coastal system, many restoration projects aiming to preserve Posidonia oceanica meadows took place in the last decades. Several transplantation techniques have produced different results. In fact the same transplanting methodology may originate diverse results under different environmental conditions. Recently, naturalistic engineering techniques developed on land, have been used for transplantations of P. oceanica. Pilot projects concerning small surfaces were carried out between 2006 and 2010. More recently, a large-scale program (0.1 km2) was realized in 2012 at Civitavecchia (Roma, Thyrrenian Sea). The applied technique consists basically of mattresses filled with sand coupled with a net covering able to hold steady in situ the plant rhizomes. These structures have been variously modified in time to be adapted to the different type of substratum and various hydrodynamic conditions of the transplanting sites. Following the results of these transplantation experiences, we analyzed pros and cons of the techniques in order to improve the methodology. Firstly, these techniques may be considered suitable to large-scale projects allowing to minimize transplantation times. Secondly, the rhizomes may be successfully fixed to the structures; the majority of the transplanted shoots was not damaged showing a very good vegetative vitality with the production of new rhizomes, leaves and roots few months after transplanting. Finally, this procedure is flexible, as the basic technique can be modified and tailored to the various environmental conditions of the different receiving site. However, the results obtained in different areas are highly heterogeneous suggesting that a careful selection of the hosting site is a focal point. To this aim, a pilot study before the beginning of large-scale project seems mandatory, providing a fundamental support to guarantee successful results.


2009 ◽  
Vol 52 (5) ◽  
Author(s):  
Juan M. Ruíz ◽  
Lazaro Marín-Guirao ◽  
Jose M. Sandoval-Gil

Check List ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 489-495
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Ophelia roscoffensis Augener, 1910 is an opheliid worm identifiable by the number of anterior abranchiate chaetigers and the number of the gill pairs. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first record of Ophelia roscoffensis in the Italian waters. A total of 18 specimens were collected along the coast of Civitavecchia (Tyrrhenian Sea) in a Posidonia oceanica (L.) Delile bed at a depth of 7 m.


Check List ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 125-130
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Goniadella bobrezkii (Annenkova, 1929) is a small goniadid worm identifiable by the number of anterior uniramous parapodia and by the position of the posterior spine-like notochetae arising dorsal to dorsal cirri. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first generic and specific record of G. bobrezkii along Italian coasts. A total of 25 specimens were collected in a Posidonia oceanica (L.) Delile bed, depth of 7 m, off Civitavecchia (Rome).


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2013 ◽  
Vol 14 (1) ◽  
pp. 193 ◽  
Author(s):  
M. BONACORSI ◽  
C. PERGENT-MARTINI ◽  
N. BREAND ◽  
G. PERGENT

Over the last few years, a widespread regression of Posidonia oceanica meadows has been noticed in the Mediterranean Sea. However, the magnitude of this decline is still debated. The objectives of this study are (i) to assess the spatio-temporal evolution of Posidonia oceanica around Cap Corse (Corsica) over time comparing available ancient maps (from 1960) with a new (2011) detailed map realized combining different techniques (aerial photographs, SSS, ROV, scuba diving); (ii) evaluate the reliability of ancient maps; (iii) discuss observed regression of the meadows in relation to human pressure along the 110 km of coast. Thus, the comparison with previous data shows that, apart from sites clearly identified with the actual evolution, there is a relative stability of the surfaces occupied by the seagrass Posidonia oceanica. The recorded differences seem more related to changes in mapping techniques. These results confirm that in areas characterized by a moderate anthropogenic impact, the Posidonia oceanica meadow has no significant regression and that the changes due to the evolution of mapping techniques are not negligible. However, others facts should be taken into account before extrapolating to the Mediterranean Sea (e.g. actually mapped surfaces) and assessing the amplitude of the actual regression.


Sign in / Sign up

Export Citation Format

Share Document