Comment on “Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica” by T. E. Cox et al.

2016 ◽  
Author(s):  
Anonymous
2015 ◽  
Author(s):  
Stefano Acunto ◽  
Luigi Piazzi ◽  
Francesco L. Cinelli ◽  
Anna Maria De Biasi ◽  
Lorenzo Pacciardi ◽  
...  

Transplantation of seagrasses is considered a useful method to favour the recovery of degraded meadows. Hence, many projects have been carried out worldwide and a manifold of techniques have been applied. However, the choice of transplantation procedures remains a main problem to be assessed. In order to optimize efforts and to minimize risks of plants loss, the applied methodologies should take into account typology of hosting substratum, hydrodynamic conditions, depth and seagrass species. Due to their fundamental ecological role in the Mediterranean coastal system, many restoration projects aiming to preserve Posidonia oceanica meadows took place in the last decades. Several transplantation techniques have produced different results. In fact the same transplanting methodology may originate diverse results under different environmental conditions. Recently, naturalistic engineering techniques developed on land, have been used for transplantations of P. oceanica. Pilot projects concerning small surfaces were carried out between 2006 and 2010. More recently, a large-scale program (0.1 km2) was realized in 2012 at Civitavecchia (Roma, Thyrrenian Sea). The applied technique consists basically of mattresses filled with sand coupled with a net covering able to hold steady in situ the plant rhizomes. These structures have been variously modified in time to be adapted to the different type of substratum and various hydrodynamic conditions of the transplanting sites. Following the results of these transplantation experiences, we analyzed pros and cons of the techniques in order to improve the methodology. Firstly, these techniques may be considered suitable to large-scale projects allowing to minimize transplantation times. Secondly, the rhizomes may be successfully fixed to the structures; the majority of the transplanted shoots was not damaged showing a very good vegetative vitality with the production of new rhizomes, leaves and roots few months after transplanting. Finally, this procedure is flexible, as the basic technique can be modified and tailored to the various environmental conditions of the different receiving site. However, the results obtained in different areas are highly heterogeneous suggesting that a careful selection of the hosting site is a focal point. To this aim, a pilot study before the beginning of large-scale project seems mandatory, providing a fundamental support to guarantee successful results.


2015 ◽  
Author(s):  
Stefano Acunto ◽  
Luigi Piazzi ◽  
Francesco L. Cinelli ◽  
Anna Maria De Biasi ◽  
Lorenzo Pacciardi ◽  
...  

Transplantation of seagrasses is considered a useful method to favour the recovery of degraded meadows. Hence, many projects have been carried out worldwide and a manifold of techniques have been applied. However, the choice of transplantation procedures remains a main problem to be assessed. In order to optimize efforts and to minimize risks of plants loss, the applied methodologies should take into account typology of hosting substratum, hydrodynamic conditions, depth and seagrass species. Due to their fundamental ecological role in the Mediterranean coastal system, many restoration projects aiming to preserve Posidonia oceanica meadows took place in the last decades. Several transplantation techniques have produced different results. In fact the same transplanting methodology may originate diverse results under different environmental conditions. Recently, naturalistic engineering techniques developed on land, have been used for transplantations of P. oceanica. Pilot projects concerning small surfaces were carried out between 2006 and 2010. More recently, a large-scale program (0.1 km2) was realized in 2012 at Civitavecchia (Roma, Thyrrenian Sea). The applied technique consists basically of mattresses filled with sand coupled with a net covering able to hold steady in situ the plant rhizomes. These structures have been variously modified in time to be adapted to the different type of substratum and various hydrodynamic conditions of the transplanting sites. Following the results of these transplantation experiences, we analyzed pros and cons of the techniques in order to improve the methodology. Firstly, these techniques may be considered suitable to large-scale projects allowing to minimize transplantation times. Secondly, the rhizomes may be successfully fixed to the structures; the majority of the transplanted shoots was not damaged showing a very good vegetative vitality with the production of new rhizomes, leaves and roots few months after transplanting. Finally, this procedure is flexible, as the basic technique can be modified and tailored to the various environmental conditions of the different receiving site. However, the results obtained in different areas are highly heterogeneous suggesting that a careful selection of the hosting site is a focal point. To this aim, a pilot study before the beginning of large-scale project seems mandatory, providing a fundamental support to guarantee successful results.


2016 ◽  
Vol 13 (7) ◽  
pp. 2179-2194 ◽  
Author(s):  
T. Erin Cox ◽  
Frédéric Gazeau ◽  
Samir Alliouane ◽  
Iris E. Hendriks ◽  
Paul Mahacek ◽  
...  

Abstract. Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient environment (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of  ∼ 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.


2017 ◽  
Vol 164 (5) ◽  
Author(s):  
T. E. Cox ◽  
M. Nash ◽  
F. Gazeau ◽  
M. Déniel ◽  
E. Legrand ◽  
...  

2017 ◽  
Vol 497 ◽  
pp. 197-211 ◽  
Author(s):  
T.E. Cox ◽  
V. Díaz-Castañeda ◽  
S. Martin ◽  
S. Alliouane ◽  
P. Mahacek ◽  
...  

2009 ◽  
Vol 52 (5) ◽  
Author(s):  
Juan M. Ruíz ◽  
Lazaro Marín-Guirao ◽  
Jose M. Sandoval-Gil

2016 ◽  
Author(s):  
T. E. Cox ◽  
F. Gazeau ◽  
S. Alliouane ◽  
I. E. Hendriks ◽  
P. Mahacek ◽  
...  

Abstract. Seagrass are expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the precise manipulation of pH as an offset from the ambient. This system was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the eight-month study. Changes in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results suggest any benefit from ocean acidification, over the next century, on Posidonia physiology and growth may be minimal. The limited stimulation casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase buffering capacity of meadows.


Sign in / Sign up

Export Citation Format

Share Document