scholarly journals Chronic-low-dose L-NAME treatment increases nitric oxide production and vasorelaxation in normotensive rats

2007 ◽  
pp. S17-S24
Author(s):  
I Bernátová ◽  
J Kopincová ◽  
A Púzserová ◽  
P Janega ◽  
P Babál

N(G)-nitro-L-arginine methyl ester (L-NAME) is a non-specific nitric oxide (NO) synthase inhibitor, commonly used for the induction of NO-deficient hypertension. The aim of this study was to investigate the effect of chronic low-dose administration of L-NAME on NO production, vascular function and structure of the heart and selected arteries of rats. Adult male Wistar rats were treated with L-NAME in the dose of approximately 1.5 mg/kg/day in drinking water for 8 weeks. Basal blood pressure (BP) of rats (determined by tail-cuff) was 112+/-3 mm Hg. The low-dose administration of L-NAME significantly elevated BP measured on the third and sixth week of treatment vs. controls by approximately 9 % and 12 %, respectively. After this period, BP of L-NAME-treated rats returned to the control values. The relative left ventricular mass, heart fibrosis and collagen III/collagen I ratio were not affected by L-NAME. Similarly, there were no alterations in the cross-sectional area and wall thickness/diameter ratio of the aorta and the femoral artery of L-NAME-treated rats. NO synthase activity (determined by conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline) was not altered in the hypothalamus of L-NAME-treated rats. Interestingly, chronic low-dose L-NAME treatment significantly elevated NO synthase activity in the left ventricle and aorta, increased endothelium-dependent acetylcholine-induced vasorelaxation and reduced serotonin-induced vasoconstriction of the femoral artery. The data suggest that chronic low-dose L-NAME treatment can increase NO production and vasorelaxation in normotensive rats without negative structural changes in the cardiovascular system.

2010 ◽  
Vol 299 (6) ◽  
pp. H2037-H2045 ◽  
Author(s):  
Lennart G. Bongartz ◽  
Branko Braam ◽  
Marianne C. Verhaar ◽  
Maarten Jan M. Cramer ◽  
Roel Goldschmeding ◽  
...  

We recently developed a rat model of cardiorenal failure that is characterized by severe left ventricular systolic dysfunction (LVSD) and low nitric oxide (NO) production that persisted after temporary low-dose NO synthase inhibition. We hypothesized that LVSD was due to continued low NO availability and might be reversed by supplementing NO. Rats underwent a subtotal nephrectomy and were treated with low-dose NO synthase inhibition with Nω-nitro-l-arginine up to week 8. After 3 wk of washout, rats were treated orally with either the long-acting, tolerance-free NO donor molsidomine (Mols) or vehicle (Veh). Cardiac and renal function were measured on weeks 11, 13, and 15. On week 16, LV hemodynamics and pressure-volume relationships were measured invasively, and rats were killed to quantify histological damage. On week 15, blood pressure was mildly reduced and creatinine clearance was increased by Mols (both P < 0.05). Mols treatment improved ejection fraction (53 ± 3% vs. 37 ± 2% in Veh-treated rats, P < 0.001) and stroke volume (324 ± 33 vs. 255 ± 15 μl in Veh-treated rats, P < 0.05). Rats with Mols treatment had lower end-diastolic pressures (8.5 ± 1.1 mmHg) than Veh-treated rats (16.3 ± 3.5 mmHg, P < 0.05) and reduced time constants of relaxation (21.9 ± 1.8 vs. 30.9 ± 3.3 ms, respectively, P < 0.05). The LV end-systolic pressure-volume relationship was shifted to the left in Mols compared with Veh treatment. In summary, in a model of cardiorenal failure with low NO availability, supplementing NO significantly improves cardiac systolic and diastolic function without a major effect on afterload.


2000 ◽  
Vol 279 (6) ◽  
pp. H2967-H2974 ◽  
Author(s):  
Raymond K. Kudej ◽  
Xiao-Ping Zhang ◽  
Bijan Ghaleh ◽  
Cheng-Hsuing Huang ◽  
John B. Jackson ◽  
...  

The goal of the current study was to determine the effects of cAMP-mediated coronary reactivity in conscious pigs with stunned myocardium induced by 1.5 h coronary stenosis (CS) and 12 h coronary artery reperfusion (CAR). Domestic swine ( n = 5) were chronically instrumented with a coronary artery blood flow (CBF) probe, hydraulic occluder, left ventricular pressure gauge, wall-thickening crystals in the ischemic and nonischemic zones, and a coronary sinus catheter. The hydraulic occluder was inflated to induce a CS with a stable 38 ± 1% reduction in CBF for 1.5 h. Before flow reduction and during CAR, cAMP-induced coronary vasodilation was investigated by forskolin (20 nmol · kg−1 · min−1). Enhanced CBF responses [+62 ± 9%, P < 0.05, compared with pre-CS (+37 ± 3%)] were observed for forskolin at 12 h after CAR as well as for bradykinin and reactive hyperemia. With the use of a similar protocol during systemic nitric oxide (NO) synthase inhibition with Nω -nitro-l-arginine (30 mg · kg−1 · day−1 for 3 days), the enhanced CBF responses to forskolin, bradykinin, and reactive hyperemia were not observed after CS. Isolated microvessel preparations from pigs ( n = 8) also demonstrated enhanced NO production to direct stimulation of adenylyl cyclase with forskolin (+71 ± 12%) or NKH-477 (+60 ± 10%) and administration of 8-bromo-cAMP (+74 ± 13%), which were abolished by protein kinase A or NO synthase inhibition. These data indicate that cAMP stimulation elicits direct coronary vasodilation and that this action is amplified in the presence of sustained myocardial stunning after recovery from CS. This enhanced cAMP coronary vasodilation is mediated by an NO mechanism that may be involved in myocardial protection from ischemic injury.


2013 ◽  
pp. 615-629 ◽  
Author(s):  
A. PÚZSEROVÁ ◽  
J. KOPINCOVÁ ◽  
P. SLEZÁK ◽  
P. BALIŠ ◽  
I. BERNÁTOVÁ

This study examined nitric oxide (NO) production, oxidative load and endothelium-dependent relaxation (NO-dependent and NO-independent) in adult male borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats as compared to normotensive Wistar-Kyoto (WKY) rats. Systolic blood pressure (BP) was determined by tail-cuff. NO production was determined by conversion of [3H]-L-arginine. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured for assessment of oxidative load. Vascular function was investigated in rings of the femoral artery (FA) using a wire myograph. BP of WKY, BHR and SHR was 106±2, 143±3 and 191±3 mm Hg, respectively (p<0.01 for each). Significant left ventricle (LV) hypertrophy and elevated levels of CD and TBARS in the LV were present in BHR and SHR as compared to WKY. NO production was elevated significantly in the aorta of BHR and SHR vs. WKY as well as in the LV of SHR vs. WKY. Acetylcholine (ACh)-induced relaxation of the FA was reduced significantly in both BHR and SHR vs. WKY. The NO-dependent component of ACh-induced relaxation had increasing tendency in hypertensive groups and it correlated positively with BP. The NO-independent component of vasorelaxation was reduced significantly in BHR and SHR vs. WKY and it correlated negatively with BP. In conclusion, the results showed that endothelial dysfunction in the experimental model of borderline hypertensive and hypertensive rats is NO-independent. The results suggest that borderline hypertension represents a risk of other cardiovascular disorders which is qualitatively similar to that of fully developed hypertension.


2013 ◽  
Vol 115 (4) ◽  
pp. 422-435 ◽  
Author(s):  
Elena Grossini ◽  
Daniela Surico ◽  
David A. S. G. Mary ◽  
Claudio Molinari ◽  
Nicola Surico ◽  
...  

Human chorionic gonadotropin (hCG) is not only responsible for numerous pregnancy-related processes, but can affect the cardiovascular system as well. So far, however, information about any direct effect elicited by hCG on cardiac function, perfusion, and the mechanisms involved has remained scarce. Therefore, the present study aimed to determine the primary in vivo effect of hCG on cardiac contractility and coronary blood flow and the involvement of autonomic nervous system and nitric oxide (NO). Moreover, in coronary endothelial cells (CEC), the intracellular pathways involved in the effects of hCG on NO release were also examined. In 25 anesthetized pigs, intracoronary 500 mU/ml hCG infusion at constant heart rate and aortic blood pressure increased coronary blood flow, maximum rate of change of left ventricular systolic pressure, segmental shortening, cardiac output, and coronary NO release ( P < 0.0001). These hemodynamic responses were graded in a further five pigs. Moreover, while blockade of muscarinic cholinoceptors ( n = 5) and of α-adrenoceptors ( n = 5) did not abolish the observed responses, β1-adrenoceptors blocker ( n = 5) prevented the effects of hCG on cardiac function. In addition, β2-adrenoceptors ( n = 5) and NO synthase inhibition ( n = 5) abolished the coronary response and the effect of hCG on NO release. In CEC, hCG induced the phosphorylation of endothelial NO synthase through cAMP/PKA signaling and ERK1/2, Akt, p38 MAPK involvement, which were activated as downstream effectors of β2-adrenoceptor stimulation. In conclusion, in anesthetized pigs, hCG primarily increased cardiac function and perfusion through the involvement of β-adrenoceptors and NO release. Moreover, cAMP/PKA-dependent kinases phosphorylation was found to play a role in eliciting the observed NO production in CEC.


1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


2004 ◽  
Vol 287 (1) ◽  
pp. L60-L68 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Tamara L. Young ◽  
Leif D. Nelin

Nitric oxide (NO) is produced by NO synthase (NOS) from l-arginine (l-Arg). Alternatively, l-Arg can be metabolized by arginase to produce l-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with l-valine (l-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-α (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of l-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM l-Val, EGM with 10 mM l-Arg, or EGM with both 10 mM l-Arg and 30 mM l-Val. In both control and L/T bPAEC, treatment with l-Val decreased urea production and increased NO production. Treatment with l-Arg increased both urea and NO production. The addition of the combination l-Arg and l-Val decreased urea production compared with the addition of l-Arg alone and increased NO production compared with l-Val alone. These data suggest that competition for intracellular l-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.


1993 ◽  
Vol 264 (4) ◽  
pp. G678-G685
Author(s):  
J. G. Jin ◽  
S. Misra ◽  
J. R. Grider ◽  
G. M. Makhlouf

The mechanism of action of endogenous tachykinins [substance P (SP) and neurokinin A and B (NKA and NKB)] and of receptor-specific tachykinin analogues (SP methyl ester (SPME), [beta-Ala8]NKA-(4-10), and senktide) was examined in circular muscle of guinea pig stomach. Cross-desensitization studies confirmed that SPME and SP interacted with NK-1 receptors, [beta-Ala8]NKA-(4-10) and NKA with NK-2 receptors, and senktide and NKB with NK-3 receptors. NK-1 and NK-3-receptor agonists induced relaxation and stimulated vasoactive intestinal peptide (VIP) release and nitric oxide (NO) production: tetrodotoxin abolished VIP release, NO production, and relaxation, converting the response to NK-1-receptor agonists to contraction; the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) abolished NO production, partly inhibited VIP release (56-64%, P < 0.01), and abolished relaxation; the VIP antagonist VIP-(10-28) partly inhibited NO production (73-74%, P < 0.001) and relaxation (56-58%, P < 0.01); and atropine augmented relaxation by 28-35% (P < 0.01). The pattern of inhibition implied that: 1) relaxation was mediated by VIP and NO; 2) VIP release was partly dependent on NO production, since it was strongly inhibited by L-NNA; and 3) NO was largely produced by the action of VIP on muscle cells, since it was strongly inhibited by VIP-(10-28). NK-2-receptor agonists elicited only contraction that was not affected by tetrodotoxin; these agonists also inhibited VIP release, NO production, and relaxation induced by NK-1- and NK-3-receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 282 (6) ◽  
pp. H2198-H2209 ◽  
Author(s):  
David B. Haitsma ◽  
Daphne Merkus ◽  
Jefrey Vermeulen ◽  
Pieter D. Verdouw ◽  
Dirk J. Duncker

Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N ω-nitro-l-arginine (l-NNA, 20 mg/kg iv). However, l-NNA resulted in similar decreases in systemic (43 ± 3% in N swine and 49 ± 4% in MI swine), pulmonary (45 ± 5% in N swine and 49 ± 4% in MI swine), and coronary (28 ± 4% in N and 35 ± 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained.


2004 ◽  
Vol 96 (3) ◽  
pp. 853-860 ◽  
Author(s):  
Tetsuya Tatsumi ◽  
Natsuya Keira ◽  
Kazuko Akashi ◽  
Miyuki Kobara ◽  
Satoaki Matoba ◽  
...  

The mechanisms by which endotoxemia causes cardiac depression have not been fully elucidated. The present study examined the involvement of nitric oxide (NO) in this pathology. Rats were infused with lipopolysaccharide (LPS) or saline, and the plasma and myocardial [Formula: see text] and [Formula: see text] (NOx) concentrations were measured before or 3, 6, and 24 h after treatment. The hearts were then immediately isolated and mounted in a Langendorff apparatus, and left ventricular developed pressure (LVDP) was determined before biochemical analysis of the myocardium. LPS injection effected the expression of inducible NO synthase (iNOS) in the myocardium, a marked increase in plasma and myocardial NOx levels, and a significant decline in LVDP compared with saline controls. The LPS-induced NO production and concomitant cardiac depression were most pronounced 6 h after LPS injection and were accompanied by a significant increase in myocardial cGMP content. Myocardial ATP levels were not significantly altered after LPS injection. Significant negative correlation was observed between LVDP and myocardial cGMP content, as well as between LVDP and plasma NOx levels. Aminoguanidine, an inhibitor of iNOS, significantly attenuated the LPS-induced NOx production and contractile dysfunction. Furthermore, 1 H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, significantly decreased myocardial cGMP content and attenuated the contractile depression, although aminoguanidine or 1 H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one was not able to completely reverse myocardial dysfunction. Our data suggest that endotoxin-induced contractile dysfunction in rat hearts is associated with NO production by myocardial iNOS and a concomitant increase in myocardial cGMP.


Sign in / Sign up

Export Citation Format

Share Document