scholarly journals The role of spinal cord vanilloid (TRPV1) receptors in pain modulation

2008 ◽  
pp. S69-S77
Author(s):  
D Špicarová ◽  
J Paleček

Transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel activated by capsaicin, a pungent substance from chili peppers. It is considered to act as an integrator of various physical and chemical nociceptive stimuli, as it can be gated by noxious heat (>43 oC), low pH (protons) and also by recently described endogenous lipids. The structure and function of TRPV1 receptors was vigorously studied, especially since its cloning in 1997. However, most of the research was pointed towards the role of TRPV1 receptors in the peripheral tissues. Mounting evidence now suggests that TRPV1 receptors on the central branches of dorsal root ganglion neurons in the spinal cord may play an important role in modulation of pain and nociceptive transmission. The aim of this short review was to summarize the knowledge about TRPV1 receptors in the spinal cord dorsal horn, preferentially from morphological and electrophysiological studies on spinal cord slices and from in vivo experiments.

2017 ◽  
pp. 549-552 ◽  
Author(s):  
N. KALYNOVSKA ◽  
P. ADAMEK ◽  
J. PALECEK

Transient receptor potential vanilloid type 1 (TRPV1) receptors are important in the development of different pathological chronic pain states. Here we examined the role of spinal cord TRPV1 receptors in the mechanisms leading to activation of dorsal horn neurons after paclitaxel (PAC) treatment. PAC is a widely used chemotherapeutic drug that often leads to development of painful neuropathy. Immunohistochemical analysis of c-Fos protein expression in dorsal horn neurons was used as a marker of neuronal activation. Rat spinal cord slices were processed for in vitro incubation with PAC (100 nM) and TRPV1 receptor antagonists (SB366791 and AMG9810; 10 µM). PAC treatment induced significant upregulation of c-Fos nuclear expression in superficial dorsal horn neurons that was diminished by TRPV1 receptor antagonists pre-incubation. These results further substantiated the role of spinal TRPV1 receptors in the development of paclitaxel-induced neuropathic pain and contribute to better understanding of the pathological mechanisms involved.


2014 ◽  
pp. S225-S236 ◽  
Author(s):  
D. SPICAROVA ◽  
V. NERANDZIC ◽  
J. PALECEK

The structure, expression and function of the transient receptor potential vanilloid 1 (TRPV1) receptor were intensively studied since the cloning in 1997 and TRPV1 receptors are now considered to act as transducers and molecular integrators of nociceptive stimuli in the periphery. In contrast, spinal TRPV1 receptors were studied less extensively and their role in pain modulation is still not fully understood. This short review is a follow up on our previous summary in this area (Spicarova and Palecek 2008). The aim was to review preferentially the most recent findings concerning the role of the spinal TRPV1 receptors, published within the last five years. The update is given on the expression and function of the spinal TRPV1 receptors, their activation by endogenous agonists, interaction between the endocannabinoid and endovanillod system and possible role of the spinal TRPV1 receptors in pathological pain states. There is now mounting evidence that TRPV1 receptors may be an important element in modulation of nociceptive information at the spinal cord level and represent an interesting target for analgesic therapy.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mario Heles ◽  
Petra Mrozkova ◽  
Dominika Sulcova ◽  
Pavel Adamek ◽  
Diana Spicarova ◽  
...  

Abstract Background Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C–C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. Methods Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. Results Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. Conclusions Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.


2009 ◽  
Vol 102 (1) ◽  
pp. 234-243 ◽  
Author(s):  
Diana Spicarova ◽  
Jiri Palecek

Transient receptor potential vanilloid (TRPV1) receptors are abundant in a subpopulation of primary sensory neurons that convey nociceptive information from the periphery to the spinal cord dorsal horn. The TRPV1 receptors are expressed on both the peripheral and central branches of these dorsal root ganglion (DRG) neurons and can be activated by capsaicin, heat, low pH, and also by recently described endogenous lipids. Using patch-clamp recordings from superficial dorsal horn (DH) neurons in acute spinal cord slices, the effect of application of the endogenous TRPV1 agonist N-oleoyldopamine (OLDA) on the frequency of miniature excitatory postsynaptic currents (mEPSCs) was evaluated. A high concentration OLDA (10 μM) solution was needed to increase the mEPSC frequency, whereas low concentration OLDA (0.2 μM) did not evoke any change under control conditions. The increase was blocked by the TRPV1 antagonists SB366791 or BCTC. Application of a low concentration of OLDA evoked an increase in mEPSC frequency after activation of protein kinase C by phorbol ester (PMA) and bradykinin or in slices from animals with peripheral inflammation. Increasing the bath temperature from 24 to 34°C enhanced the basal mEPSC frequency, but the magnitude of changes in the mEPSC frequency induced by OLDA administration was similar at both temperatures. Our results suggest that presumed endogenous agonists of TRPV1 receptors, like OLDA, could have a considerable impact on synaptic transmission in the spinal cord, especially when TRPV1 receptors are sensitized. Spinal TRPV1 receptors could play a pivotal role in modulation of nociceptive signaling in inflammatory pain.


Author(s):  
Sanjeev K. Singh ◽  
M. S. Muthu ◽  
Ravindran Revand ◽  
M. B. Mandal

Background: Since long back, it has been a matter of discussion regarding the role of peripheral blood vessels in regulation of cardiorespiratory (CVR) system. Objective: The role of 5-HT3 and TRPV1 receptors present on perivascular nerves in elicitation of CVR reflexes was examined after intra-arterial instillation of bradykinin in urethane anesthetized rats. Materials and Methods: Femoral artery was cannulated retrogradely and was utilized for the instillation of saline/agonist/antagonist and recording of blood pressure (BP), using a double ported 24G cannula. BP, respiration and ECG were recorded for 30 min after bradykinin (1 µM) in the absence or presence of antagonists. Results: Instillation of bradykinin produced immediate hypotensive (40%), bradycardiac (17%), tachypnoeic (45%) and hyperventilatory (96%) responses of shorter latencies (5-8 s) favoring the neural mechanisms in producing the responses. In lignocaine (2%) pretreated animals, bradykinin-induced hypotensive (10%), bradycardiac (1.7%), tachypnoeic (13%) and hyperventilatory (13%) responses attenuated significantly. Pretreatment with ondansetron (100 µg/kg), 5-HT3-antagonist attenuated the hypotensive (10%), bradycardiac (1.7%), tachypnoeic (11%) and hyperventilatory (11%) responses significantly. Pretreatment with capsazepine (1 mg/kg), transient receptor potential vanilloid 1- antagonist blocked the hypotensive (5%), bradycardiac (1.2%), tachypnoeic (6%) and hyperventilatory (6%) responses significantly. Conclusion: In conclusion, presence of a nociceptive agent in the local segment of an artery evokes vasosensory reflex responses modulating CVR parameters involving TRPV1 and 5-HT3 receptors present on the perivascular sensory nerve terminals in anesthetized rats.


2013 ◽  
Vol 109 (7) ◽  
pp. 1704-1712 ◽  
Author(s):  
Michelino Puopolo ◽  
Alexander M. Binshtok ◽  
Gui-Lan Yao ◽  
Seog Bae Oh ◽  
Clifford J. Woolf ◽  
...  

QX-314 ( N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of “pore dilation” previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/ PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50–100 μM. We conclude that QX-314 is directly permeant in the “standard” pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 775
Author(s):  
Xingjuan Chen ◽  
Yaqian Duan ◽  
Ashley Riley ◽  
Megan Welch ◽  
Fletcher White ◽  
...  

Individuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.


2010 ◽  
Vol 42 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Istvan Szitter ◽  
Gabor Pozsgai ◽  
Katalin Sandor ◽  
Krisztian Elekes ◽  
Agnes Kemeny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document