scholarly journals SOUND CLASSIFICATION SYSTEM USING MACHINE LEARNING TECHNIQUES

Author(s):  
Dr. S. Veena ◽  
Nerisai M. V ◽  
Remya J. V ◽  
Sai Tejah. S
2020 ◽  
pp. 122-142
Author(s):  
Sapna Malik ◽  
Kiran Khatter

The Android Mobiles constitute a large portion of mobile market which also attracts the malware developer for malicious gains. Every year hundreds of malwares are detected in the Android market. Unofficial and Official Android market such as Google Play Store are infested with fake and malicious apps which is a warning alarm for naive user. Guided by this insight, this paper presents the malicious application detection and classification system using machine learning techniques by extracting and analyzing the Android Permission Feature of the Android applications. For the feature extraction, the authors of this work have developed the AndroData tool written in shell script and analyzed the extracted features of 1060 Android applications with machine learning algorithms. They have achieved the malicious application detection and classification accuracy of 98.2% and 87.3%, respectively with machine learning techniques.


2018 ◽  
Vol 9 (1) ◽  
pp. 95-114 ◽  
Author(s):  
Sapna Malik ◽  
Kiran Khatter

The Android Mobiles constitute a large portion of mobile market which also attracts the malware developer for malicious gains. Every year hundreds of malwares are detected in the Android market. Unofficial and Official Android market such as Google Play Store are infested with fake and malicious apps which is a warning alarm for naive user. Guided by this insight, this paper presents the malicious application detection and classification system using machine learning techniques by extracting and analyzing the Android Permission Feature of the Android applications. For the feature extraction, the authors of this work have developed the AndroData tool written in shell script and analyzed the extracted features of 1060 Android applications with machine learning algorithms. They have achieved the malicious application detection and classification accuracy of 98.2% and 87.3%, respectively with machine learning techniques.


2019 ◽  
Vol 9 (18) ◽  
pp. 3885 ◽  
Author(s):  
Bruno da Silva ◽  
Axel W. Happi ◽  
An Braeken ◽  
Abdellah Touhafi

Automatic urban sound classification is a desirable capability for urban monitoring systems, allowing real-time monitoring of urban environments and recognition of events. Current embedded systems provide enough computational power to perform real-time urban audio recognition. Using such devices for the edge computation when acting as nodes of Wireless Sensor Networks (WSN) drastically alleviates the required bandwidth consumption. In this paper, we evaluate classical Machine Learning (ML) techniques for urban sound classification on embedded devices with respect to accuracy and execution time. This evaluation provides a real estimation of what can be expected when performing urban sound classification on such constrained devices. In addition, a cascade approach is also proposed to combine ML techniques by exploiting embedded characteristics such as pipeline or multi-thread execution present in current embedded devices. The accuracy of this approach is similar to the traditional solutions, but provides in addition more flexibility to prioritize accuracy or timing.


2018 ◽  
Author(s):  
Thomas Miano

Machine learning is a field of study that uses computational and statistical techniques to enable computers to learn. When machine learning is applied, it functions as an instrument that can solve problems or expand knowledge about the surrounding world. Increasingly, machine learning is also an instrument for artistic expression in digital and non-digital media. While painted art has existed for thousands of years, the oldest digital art is less than a century old. Digital media as an art form is a relatively nascent, and the practice of machine learning in digital art is even more recent. Across all artistic media, a piece is powerful when it can captivate its consumer. Such captivation can be elicited through through a wide variety of methods including but not limited to distinct technique, emotionally evocative communication, and aesthetically pleasing combinations of textures. This work aims to explore how machine learning can be used simultaneously as a scientific instrument for understanding the world and as an artistic instrument for inspiring awe. Specifically, our goal is to build an end-to-end system that uses modern machine learning techniques to accurately recognize sounds in the natural environment and to communicate via visualization those sounds that it has recognized. We validate existing research by finding that convolutional neural networks, when paired with transfer learning using out-of-domain data, can be successful in mapping an image classification task to a sound classification task. Our work offers a novel application where the model used for performant sound classification is also used for visualization in an end-to-end, sound-to-image system.


Author(s):  
Thomas Miano

Machine learning is a field of study that uses computational and statistical techniques to enable computers to learn. When machine learning is applied, it functions as an instrument that can solve problems or expand knowledge about the surrounding world. Increasingly, machine learning is also an instrument for artistic expression in digital and non-digital media. While painted art has existed for thousands of years, the oldest digital art is less than a century old. Digital media as an art form is a relatively nascent, and the practice of machine learning in digital art is even more recent. Across all artistic media, a piece is powerful when it can captivate its consumer. Such captivation can be elicited through through a wide variety of methods including but not limited to distinct technique, emotionally evocative communication, and aesthetically pleasing combinations of textures. This work aims to explore how machine learning can be used simultaneously as a scientific instrument for understanding the world and as an artistic instrument for inspiring awe. Specifically, our goal is to build an end-to-end system that uses modern machine learning techniques to accurately recognize sounds in the natural environment and to communicate via visualization those sounds that it has recognized. We validate existing research by finding that convolutional neural networks, when paired with transfer learning using out-of-domain data, can be successful in mapping an image classification task to a sound classification task. Our work offers a novel application where the model used for performant sound classification is also used for visualization in an end-to-end, sound-to-image system.


Sign in / Sign up

Export Citation Format

Share Document