scholarly journals EXPERIMENTAL STUDY ON THE EFFECT OF WATER QUALITY ON STRENGTH OF CONCRETE CASE STUDY: DAL LAKE WATER

Author(s):  
Mohammad Shafaq Bazaz
2017 ◽  
Vol 5 (4RASM) ◽  
pp. 71-77
Author(s):  
Babitha Rani ◽  
Dimple Bahri ◽  
Prabin Neupane ◽  
Kunal Kothari ◽  
Vishal Gadgihalli ◽  
...  

A study was carried out to find out the water quality ofByramangala lake of Ramanagara district. The water quality of Byramangala lake water and ground water from bore wells situated in the area within 600 meters surrounding the lake was analyzed. The quality analysis of various parameters such as BODs, COD, DO, E-Coli, and pH, Total Dissolved Solids, Total Suspended Solids and Total Hardness were tested. In addition, the presence of metals such as Cadmium (Cd), Chromium (Cr), Lead (Pb), and Iron (Fe) in the lake water and ground water samples were tested. Results for the various tests conducted showed similar trends for both lake water and ground water. It was observed that certain parameters such as BOD5, and COD were beyond permissible limits as per the BIS standards for drinking water. A few remedial measures have been proposed that may help in mitigating the pollution in the selected project area Byramangala Lake.


2017 ◽  
Vol 29 (1) ◽  
pp. 213-220
Author(s):  
Smita S. Muchandi ◽  
Rajkumar V. Raikar ◽  
Arjun S. Virupakshi ◽  
Pallavi Pharalad

1999 ◽  
Vol 40 (2) ◽  
pp. 35-43 ◽  
Author(s):  
A.V. Gray ◽  
Wang Li

The main aim of this work was to construct and validate a mathematical water quality model of the Dianchi lake, so that by altering input total phosphate (TP) loads the projected changes in the lake water TP concentrations could be estimated. Historical information had indicated deteriorating lake water quality with increasing TP concentrations. The model was based on a simple annual mass balance, relying on 3 years (wet, average and dry) data with all TP loads quantified, 7 years of lake water quality, and 36 years of flow data. All lake processes were considered within a single variable, R. Planning TP removal at STWs and within fertilizer plants, coupled with interventions to reduce non-point TP loads from all land run-off by 50%, suggested future lake water TP concentrations could be stabilised at about 0.3 mg TP/l, i.e. the estimated limit for producing algal concentrations that would cause major problems in water treatment plants. The TP load reductions envisaged as realistic would only stabilise the lake water quality by about the year 2008; interventions, unfortunately, could not return the lake to its former pristine condition. The accuracy of the predictions was ± 0.1 mg TP/1, so collection of better data was needed.


2018 ◽  
Vol 149 ◽  
pp. 01071
Author(s):  
Dorra Ellouze ◽  
Aida Ghammouri ◽  
Rahma Ben Amar

Sign in / Sign up

Export Citation Format

Share Document