scholarly journals A COMPARATIVE ANALYSIS OF COVID–19 BETWEEN INDIA AND OTHERS USING DATA MINING AND MACHINE LEARNING APPROACH

Author(s):  
Kanika Bhalla ◽  
Ashish Kumar

Novel coronavirus has caused a global pandemic which leads to acute respiratory disorder in humans. In this study, analysis of the transmission of communicable COVID19 disease in India is done. The machine learning model presents the comparison of India with other countries during initial phase of virus spread in India. After that its comparison with initial hard-hit countries is also done. Finally, we also performed time series analysis for prediction using prophet for the next seven days showing confirmed, recovered and deaths that will happen.

DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 63-72
Author(s):  
Jorge Iván Pérez Rave ◽  
Favián González Echavarría ◽  
Juan Carlos Correa Morales

The objective of this work is to develop a machine learning model for online pricing of apartments in a Colombian context. This article addresses three aspects: i) it compares the predictive capacity of linear regression, regression trees, random forest and bagging; ii) it studies the effect of a group of text attributes on the predictive capability of the models; and iii) it identifies the more stable-important attributes and interprets them from an inferential perspective to better understand the object of study. The sample consists of 15,177 observations of real estate. The methods of assembly (random forest and bagging) show predictive superiority with respect to others. The attributes derived from the text had a significant relationship with the property price (on a log scale). However, their contribution to the predictive capacity was almost nil, since four different attributes achieved highly accurate predictions and remained stable when the sample change.


2019 ◽  
Vol 14 (3) ◽  
pp. 302-307
Author(s):  
Benjamin Q. Huynh ◽  
Sanjay Basu

ABSTRACTObjectives:Armed conflict has contributed to an unprecedented number of internally displaced persons (IDPs), individuals who are forced out of their homes but remain within their country. IDPs often urgently require shelter, food, and healthcare, yet prediction of when IDPs will migrate to an area remains a major challenge for aid delivery organizations. We sought to develop an IDP migration forecasting framework that could empower humanitarian aid groups to more effectively allocate resources during conflicts.Methods:We modeled monthly IDP migration between provinces within Syria and within Yemen using data on food prices, fuel prices, wages, location, time, and conflict reports. We compared machine learning methods with baseline persistence methods of forecasting.Results:We found a machine learning approach that more accurately forecast migration trends than baseline persistence methods. A random forest model outperformed the best persistence model in terms of root mean square error of log migration by 26% and 17% for the Syria and Yemen datasets, respectively.Conclusions:Integrating diverse data sources into a machine learning model appears to improve IDP migration prediction. Further work should examine whether implementation of such models can enable proactive aid allocation for IDPs in anticipation of forecast arrivals.


Author(s):  
Akshata Kulkarni

Abstract: Officials around the world are using several COVID-19 outbreak prediction models to make educated decisions and enact necessary control measures. In this study, we developed a Machine Learning model which predicts and forecasts the COVID-19 outbreak in India, with the goal of determining the best regression model for an in-depth examination of the novel coronavirus. Based on data available from January 31 to October 31, 2020, collected from Kaggle, this model predicts the number of confirmed cases in Maharashtra. We're using a Machine Learning model to foresee the future trend of these situations. The project has the potential to demonstrate the importance of information dissemination in improving response time and planning ahead of time to help reduce risk.


2020 ◽  
Author(s):  
Logan Ryan ◽  
Huaqin Pan ◽  
Samson Mataraso ◽  
Anna Lynn-Palevsky ◽  
Emily Pellegrini ◽  
...  

2020 ◽  
Vol 23 (4) ◽  
pp. 3233-3253 ◽  
Author(s):  
Rahim Taheri ◽  
Reza Javidan ◽  
Mohammad Shojafar ◽  
P. Vinod ◽  
Mauro Conti

Author(s):  
C. Selvi ◽  
R. Shalini ◽  
V. Navaneethan ◽  
L. Santhiya

An University’s reputation and its standard are weighted by its students performance and their part in the future economic prosperity of the nation, hence a novel method of predicting the student’s upcoming academic performance is really essential to provide a pre-requisite information upon their performances. A machine learning model can be developed to predict the student’s upcoming scores or their entire performance depending upon their previous academic performances.


2020 ◽  
Author(s):  
Kazuya Fujihara ◽  
Yasuhiro Matsubayashi ◽  
Mayuko Harada Yamada ◽  
Masahiko Yamamoto ◽  
Toshihiro Iizuka ◽  
...  

BACKGROUND Applications of machine learning for the early detection of diseases for which a clear-cut diagnostic gold standard exists have been evaluated. However, little is known about the usefulness of machine learning approaches in the decision-making process for decisions such as insulin initiation by diabetes specialists for which no absolute standards exist in clinical settings. OBJECTIVE The objectives of this study were to examine the ability of machine learning models to predict insulin initiation by specialists and whether the machine learning approach could support decision making by general physicians for insulin initiation in patients with type 2 diabetes. METHODS Data from patients prescribed hypoglycemic agents from December 2009 to March 2015 were extracted from diabetes specialists’ registries, resulting in a sample size of 4860 patients who had received initial monotherapy with either insulin (n=293) or noninsulin (n=4567). Neural network output was insulin initiation ranging from 0 to 1 with a cutoff of >0.5 for the dichotomous classification. Accuracy, recall, and area under the receiver operating characteristic curve (AUC) were calculated to compare the ability of machine learning models to make decisions regarding insulin initiation to the decision-making ability of logistic regression and general physicians. By comparing the decision-making ability of machine learning and logistic regression to that of general physicians, 7 cases were chosen based on patient information as the gold standard based on the agreement of 8 of the 9 specialists. RESULTS The AUCs, accuracy, and recall of logistic regression were higher than those of machine learning (AUCs of 0.89-0.90 for logistic regression versus 0.67-0.74 for machine learning). When the examination was limited to cases receiving insulin, discrimination by machine learning was similar to that of logistic regression analysis (recall of 0.05-0.68 for logistic regression versus 0.11-0.52 for machine learning). Accuracies of logistic regression, a machine learning model (downsampling ratio of 1:8), and general physicians were 0.80, 0.70, and 0.66, respectively, for 43 randomly selected cases. For the 7 gold standard cases, the accuracies of logistic regression and the machine learning model were 1.00 and 0.86, respectively, with a downsampling ratio of 1:8, which were higher than the accuracy of general physicians (ie, 0.43). CONCLUSIONS Although we found no superior performance of machine learning over logistic regression, machine learning had higher accuracy in prediction of insulin initiation than general physicians, defined by diabetes specialists’ choice of the gold standard. Further study is needed before the use of machine learning–based decision support systems for insulin initiation can be incorporated into clinical practice.


2021 ◽  
Author(s):  
Qiao Yang ◽  
Jixi Li ◽  
Zhijia Zhang ◽  
Xiaocheng Wu ◽  
Tongquan Liao ◽  
...  

Abstract BackgroundThe novel coronavirus disease 2019 (COVID-19) spreads rapidly among people and causes a global pandemic. It is of great clinical significance to identify COVID-19 patients with high risk of death.ResultsOf the 2,169 COVID-19 patients, the median age was 61 years and male patients accounted for 48%. A total of 646 patients were diagnosed with severe illness, and 75 patients died. Obvious differences in demographics, clinical characteristics and laboratory examinations were found between survivors and non-survivors. A decision tree classifier, including three biomarkers, neutrophil-to-lymphocyte ratio, C-reactive protein and lactic dehydrogenase, was developed to predict death outcome in severe patients. This model performed well both in train dataset and test dataset. The accuracy of this model was 0.98 and 0.98, respectively.ConclusionThe machine learning model was robust and effective in predicting the death outcome in severe COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document