scholarly journals Lie algebra classification for the Chazy equation and further topics related with this algebra

2021 ◽  
Vol 17 (34) ◽  
pp. 101-109
Author(s):  
Yeisson Alexis Acevedo-Agudelo ◽  
Danilo Andrés García-Hernández ◽  
Oscar Mario Londoño-Duque ◽  
Gabriel Ignacio Loaiza-Ossa

It is known that the classification of the Lie algebras is a classical problem. Due to Levi’s Theorem the question can be reduced to the classification of semi-simple and solvable Lie algebras. This paper is devoted to classify the Lie algebra generated by the Lie symmetry group of the Chazy equation. We also present explicitly the one parame-ter subgroup related to the infinitesimal generators of the Chazy symmetry group. Moreover the classification of the Lie algebra associated to the optimal system is investigated. La clasificación de las álgebras de Lie es un problema clásico. Acorde al teorema de Levi la cuestión puede reducirse a la clasificación de álgebras de Lie semi-simples y solubles. Este artículo está dedicado a clasificar el álgebra de Lie generada por el grupo de simetría de Lie para la ecuación de Chazy. También presentamos explícitamente los subgrupos a un parámetro  relacionados con los generadores de las simetrías del grupo de Chazy. Además, la clasificación de la álgebra de Lie asociada al sistema optimo es investigada.

2021 ◽  
Vol 39 (2) ◽  
Author(s):  
Danilo García Hernández ◽  
Oscar Mario Londoño Duque ◽  
Yeisson Acevedo ◽  
Gabriel Loaiza

We obtain the complete classification of the Lie symmetry group and the optimal system’s generating operators associated with a particular case of the generalized Kummer - Schwarz equation. Using those operators we characterize all invariant solutions, alternative solutions were found for the equation studied and the Lie algebra associated with the symmetry group is classified.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


2011 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
Mehdi Nadjafikhah ◽  
Seyed-Reza Hejazi

Lie symmetry group method is applied to study the telegraph equation. The symmetry group and one-parameter group associated to the symmetries with the structure of the Lie algebra symmetries are determined. The reduced version of equation and its one-dimensional optimal system are given.


1980 ◽  
Vol 3 (2) ◽  
pp. 247-253
Author(s):  
Taw Pin Lim

In a ringRwith involution whose symmetric elementsSare central, the skew-symmetric elementsKform a Lie algebra over the commutative ringS. The classification of such rings which are2-torsion free is equivalent to the classification of Lie algebrasKoverSequipped with a bilinear formfthat is symmetric, invariant and satisfies[[x,y],z]=f(y,z)x−f(z,x)y. IfSis a field of char≠2,f≠0anddimK>1thenKis a semisimple Lie algebra if and only iffis nondegenerate. Moreover, the derived algebraK′is either the pure quaternions overSor a direct sum of mutually orthogonal abelian Lie ideals ofdim≤2.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


1983 ◽  
Vol 35 (5) ◽  
pp. 898-960 ◽  
Author(s):  
R. V. Moody ◽  
A. Pianzola

In [10] Patera and Sharp conceived a new relation, subjoining, between semisimple Lie algebras. Our objective in this paper is twofold. Firstly, to lay down a mathematical formalization of this concept for arbitrary Lie algebras. Secondly, to give a complete classification of all maximal subjoinings between Lie algebras of the same rank, of which many examples were already known to the above authors.The notion of subjoining is a generalization of the subalgebra relation between Lie algebras. To give an intuitive idea of what is involved we take a simple example. Suppose is a complex simple Lie algebra of type B2. Let be a Cartan subalgebra of and Δ the corresponding root system. We have the standard root diagramInside B2 there lies the subalgebra A1 × A1 which can be identified with the sum of and the root spaces corresponding to the long roots of B2.


Sign in / Sign up

Export Citation Format

Share Document